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Abstract: An accurate estimation of Manning’s roughness coefficient n is of vital importance in 
any hydraulic study including open channel flows. In many rivers, the velocities at two-tenths and 

eight-tenths of the depth at stations across the stream are available to estimate Manning’s 

roughness n based on a logarithmic velocity distribution. This paper re-investigates the method of 
the two-point velocity method and a sensitive analysis is theoretically carried out and verified with 

experiment data. The results show that velocity data can be used to estimate n for fully rough-

turbulent wide channels. The results also indicate that the errors in the estimated n are very 
sensitive to the errors in x (the ratio of velocity at two-tenths the depth to that at eight-tenths the 

depth). The theoretical and experimental work shows that the smoother and deeper a stream, the 

more sensitive the relative error in estimated n is to the relative error in x. 
Keywords: open channels, roughness coefficient, two-point velocities, logarithm distribution. 

 

1. INTRODUCTION* 
An accurate estimation of Manning’s 

roughness coefficient n is of vital importance 

in any hydraulic study including open 
channel flows. This also has an economic 

significance. If estimated roughness 

coefficient are too low, this could result in 
over-estimated discharge, under-estimated 

flood levels and over-design and unnecessary 

expense of erosion control works and vice 
versa (Ladson et al., 2002). 

The direct method to determine the value of 

roughness (Barnes, 1967, Hicks and Mason, 
1991) is time consuming and expensive because 

friction slopes, discharges and some cross 

sections must be measured. Current practice 
many indirect or indirectly methods have been 

used to estimate roughness in streams from 

experience or some empirical relationship based 
on the particle size distribution curve of surface 

bed material (Chow, 1959, French 1985, 

Barnes, 1967, Hicks and Mason, 1991, Coon, 
1998, Dingman and Sharma, 1997). However 

these methods are often applicable only to a 
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narrow range of river conditions and the 
accuracy is still questionable. 

In many rivers, a common method to 

measure stream flow is to measure velocity in 
several verticals at 0.2 and 0.8 times the depth 

with the velocity distribution depends on the 

roughness height. This may be related to 
Manning’s n. For wide channels with 

reference to the logarithmic law of velocity 

distribution then the value of n can be 
determined based on this velocity data (Chow, 

1959 and French, 1985). In practice, velocity 

measurement errors were unavoidable. In this 
paper, the two-point velocity method is re-

investigate and a sensitive analysis is 

theoretically carried out  and verified with 
experiment data. 

2. THEORY 

2.1 Relationship between velocity 
distrubution and roughness 

The velocity distribution of uniform turbulent 

flow in streams can be derived by using 
Prandtl’s mixing length theory (Schlichting, 

1960). Based on this theory, the shear stress at 

any point in a turbulent flow moving over a 
solid surface can be expressed as: 
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where   is the mass density of the fluid, l is 

the characteristic length known as the mixing 

length ( zl  ,where   is known as von 

Kármán’s turbulent constant. The value of   

determined from many experiments is 0.4),  u is 

velocity at a point, and z is the distance of a 

point from the solid surface. 

The shear stress   is equal to the shear stress 
on the bed 0  of the flow in the channel. From 

these two assumptions, Equation (1) can be 

written as 

z
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Integrating Equation (2) gives 
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where 0z  is the constant of integration. 

It is also known that the bed shear stress 0  is 

represented as a bed shear velocity *u  defined by 



 0
* u  (4) 

Thus Equation (3) can be written   

 
0

* ln
z
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Equation (5) indicates that the velocity 

distribution in the turbulent region is a 

logarithmic function of the distance z. This is 

commonly known as the Prandtl-von Kármán 

universal velocity distribution law. The constant 

of integration, z0, is of the same order of 

magnitude as the viscous sub-layer thickness. 

For natural channel, the flow is usually fully 

rough-turbulent, the viscous sub-layer is 

disrupted by roughness elements. The viscosity 

is no longer important, but the height of 

roughness elements becomes very influential in 
determining velocity profile. In this case 0z  

depends only on the roughness height, usually 

expressed in terms of equivalent roughness ks 

smkz 0  (6) 

where, in this case, m is a coefficient 

approximately equal to 1/30 for sand grain 

roughness (Keulegan 1938). Substituting 

Equation (6) for z0 in Equation (5) yields 

sk

zu
u

30
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for mean velocity of turbulent flow for fully-

rough flow in a wide channel (Keulegan,1938): 

sk

R

U

V
ln5.225.6

*

  (8) 

where V and *U  are cross-sectional mean 

velocity and shear velocity respectively and R is 

hydraulic radius. 

In natural wide streams, the flow is usually 

fully rough-turbulent, and the logarithmic law of 

velocity distribution depending on the 

roughness height (Equations (7) and (8)) can be 

taken as the dominating factor that affects the 

velocity distribution. The roughness height and 

shear velocity are related to Manning’s n. 

Hence, if this distribution is known, the value of 

Manning’s n can be determined.  

2.2 Two-point velocity method to estimate 

the value of Manning’s n  
Let 2.0u be the velocity at two-tenths the 

depth, that is, at a distance 0.8D from the 

bottom of a channel, where D is the depth of the 

flow. Using Equation (7) the velocity may be 

expressed as 

sk

Du
u

24
ln*

2.0 
   (9) 

Similarly, let 8.0u be the velocity at eight-

tenths the depth, then 

sk

Du
u

6
ln*

8.0 
   (10) 

Eliminating *u from the two equations above 

gives 

1

792.1178.3
ln
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where 8.02.0 / uux  .  

Substituting Equation (11) in Equation (8) 

for the rough channels with R D  and 

simplifying yields 
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Combining Manning’s formula, 

nSRV /3/2 , and gRSU *  (French, 

1985) gives 

n

D
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where D is in m, S is friction slope, and g is 

the gravitational acceleration ( 2/81.9 smg  ). 

Equating the right-hand sides of Equations 
(12) and (13) and solving for n gives 

)96.0(54.5

)1( 6/1
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This equation gives the value for Manning's 

n for fully-rough flow in a wide channel with a 

logarithmic vertical velocity distribution. It is 
suggested that when this equation is applied to 

actual streams, the value of D may be taken as 

the mean depth (Chow, 1959; French, 1985).  
In practice, velocity measurement errors 

were unavoidable. The following section will 

investigate the affect of these errors on the 
estimated roughness using this method.  

3. THEORETICAL SENSITIVITY 

ANALYSIS 

Furthermore, considering errors of the 

roughness coefficient ( n ), depth ( D ) and the 
ratio of two velocities ( x ) in the three 

quantities, to first order: 

x
x

n
D

D

n
n 









  (15) 

From Equations (14) and (15), the 
relationship between the relative error in n and 
the relative errors in D and x is obtained as  
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Equation (16) indicates that the relative error 

in n is always equal to 1/6 of the relative error in 

depth D, while it is expected to be more 
sensitive to the relative errors in x because of 

the term  1x  in the denominator. 

In order to see the effect of errors in x on errors 

in the estimated n the relative errors in x are 

plotted against the relative errors in n with 
different values of depth and the roughness 

coefficient (see Figure 1). These relationships 

were calculated from the depth range of 0.5 m to 4 
m and with a roughness coefficient range of 0.02 

to 0.05. These are the common ranges of depth 

and the value of Manning's n in natural streams. 

 

 

Figure 1.  Relationship between relative errors in roughness n and relative errors in x  

(the ratio of velocity at 0.2 the depth to that at 0.8 the depth) 
 

From these figures it can be seen that the 

relationship of the relative errors in n are very 
sensitive to the relative errors in x (the ratio of 

velocity at two-tenths the depth to that at eight-

tenths the depth). The relative errors and 

relative errors in x depend on the depth and the 

roughness of streams. The smoother and deeper 
a stream is, the more sensitive the relative error 

in n is to the relative error in x. This indicates 

that the application of the two-point velocity 
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method should be used with caution in relatively 

smooth deep rivers.  However, this finding 
needs to be verified using the experiments that 

are discussed in the next section. 

4. EXPERIMENTAL WORK AND 
ANALYSIS 

4.1 Experimental equipment  
The experimental runs were conducted in a 

laboratory flume in the Michell Hydraulic 

Laboratory, Department of Civil and 

Environmental Engineering at the University of 
Melbourne. The water was supplied to the flume 

from a constant head tank. Thus the supply always 

allowed steady conditions to be maintained. The 
inflow to the flume was controlled by a valve in 

the main supply line. Figure 2 shows the general 

arrangement of the experimental set-up. 
The flume was 7100 mm long, 500 mm wide 

and 3800 mm deep. It was completely made of 

plexiglass and had an adjustable bed slope. 

Water entered to a turbulent suppression tank 
that was situated at the upstream end of the 

flume. A screen was provided inside the 

turbulent suppression tank near the entrance of 
this pipe to dampen the turbulence generated by 

the incoming flow into the tank.  

The experiment was conducted using two 
different types of roughness. The first type of 

roughness is wire mesh with mesh size 6.5 mm 

square and the wire diameter of  0.76 mm. Such a 
method of roughening has been used in the past for 

simulating the bed roughness in free flow surface 

(e.g. Rajaratnam et al. 1976 and Zerihun 2004). A 
piece of mild steel wire screen The second type of 

roughness of the bed was gravel with the sieve 

analysis of 50d 16.5 mm, 84d 19.5 mm and 

90d  20.0 mm (see Figure 3).  

 

 

Figure 2. The experimental set-up diagram (not to scale) 
 

 

Figure 3. The two roughness types were carried out in the experiment 
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For all the tests the discharge was determined by 

a discharge measuring system. The vertical velocity 
profiles were measured by an Acoustic-Doppler 

Velocimeter (ADV) of a two-dimensional (2-D), 

side-looking probe manufactured by SonTek Inc.  
The main objective of velocity profile 

measurement was to determine Manning's n by 

using the whole velocity profile and the two-point 
velocity method. For these purposes, velocity 

observations were done at closely spaced sections 

so that they could accurately describe the actual 
velocity profile. The duration of each velocity 

measurement was set between 60 and 65 s. Figure 

3.6 show the velocity at z=1.7 cm of gravel bed 
with the water depth of 8.5 cm.  

 

Figure 4. Velocity time series at 7.1z cm of 
the gravel bed flume of 8.5 cm water depth 

 

4.2. Scope of the experiment 
Eleven test runs were conducted for the ratio 

width/depth > 5 and fully rough turbulent flow 

with Reynolds number Re  ranged from 15000 to 

30000, the value of roughness Reynolds number 

kRe ranged from 71 to 902 as shown in Table 1. 

Table 1. Characteristic data of experimental runs 

Surface type 
Depth 
(cm) 

Q     
(l/s) 

V    
(cm/s) 

Re Rek Fr n comp  

6.4 13.70 42.81 19150 71.0 0.540 0.02186 
7.2 16.68 46.33 22472 73.4 0.551 0.02175 
7.5 17.85 47.59 23729 77.4 0.555 0.02168 
8.1 20.29 50.10 26279 79.0 0.562 0.02165 
8.5 21.93 51.60 27919 80.4 0.565 0.02160 

Wire mesh 
76.0wd mm 

 

9.0 24.12 53.61 30072 82.5 0.571 0.02150 
6.5 10.87 33.44 15124 772.2 0.419 0.02807 
7.0 12.34 35.76 16855 803.6 0.435 0.02794 
7.5 14.07 37.53 18714 838.2 0.438 0.02785 
8.0 15.90 39.27 20597 871.2 0.441 0.02773 

 Gravel bed 

5.1650 d mm 

 
8.5 17.67 41.58 22500 902.6 0.455 0.02765 

 

4.3. Results and discusion 
For each test, firstly the whole velocity 

profiles were measured at every 2 or 3 mm 

intervals. Then the velocities at two-tenths and 

eight-tenths the depth were independently 
measured 30 times at the central vertical line. 

All measured velocity profiles were 

approximately logarithmic distributions showed 
as examples (see Figure 5 as examples). From 

these profiles the values of Manning's n were 

computed and considered as true roughness 
values (the last column in Table 1). 

Depth =8.5 cm, w ire mesh roughness
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Figure 5. Measured velocity profiles 
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On the other hand, for each flow depth, 30 

independent measured velocities were taken at 
two-tenths and eight-tenths the depth. From 

these measurements, 30 values of x and 30 

values of n were computed using the two-point 
velocity formula (Equation 8).  Then the relative 

errors in x and n were calculated as follows: 

%100
x

xx
E i

x


     (17) 

and  

%100
n

nn
E i

n


    (18) 

where xi is the ratio of 2.0u  and 8.0u  of ith 

measurement; ni is the estimated Manning's n  
by using two-point velocity method of ith 

measurement; x  is the mean value of x; n is the 

roughness coefficient computed from the whole 
velocity profile; xE and nE are the relative errors 

in xi and in ni of ith measurement. 

Figures 6 shows the relationships between 

relative errors in x and relative errors in n 

obtained from the experimental results for the 

wire mesh and the gravel bed respectively. 
From these figures, it can be seen that there is 

very good agreement between experimental 

results and the corresponding theoretical lines 
(Equation 16). This confirms that when using 

two-point velocity data to estimate the 

roughness coefficient, the greater the depth, the 
more sensitive the relative errors in estimated n 

are to the relative errors in x. 

The relative errors in x were also plotted 
against the relative errors in n for the cases with 

the same depth ( 5.7D  cm) but with the two 

types of roughness (Figures 7). This figure 
shows clearly that the smoother a channel, the 

more sensitive the relative errors in n are to the 

relative errors in x. However, this figure also 
indicates that the rougher a channel, the higher 

the relative error in x, which results in a higher 

relative error in n. This finding is consistent 
with theoretical analysis. 
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(a)                                                                     (b) 

Figure 6. Experimental relationships between relative errors in x and relative errors in estimated 

n and corresponding theoretical lines for ( a) wire mesh (b) gravel bed  
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Figure 7. Experimental relationships between relative errors in x and relative errors in 

 estimated n and corresponding theoretical lines for the same depth with  of roughness types 



KHOA HỌC KỸ THUẬT THỦY LỢI VÀ MÔI TRƯỜNG - SỐ 64 (3/2019) 119 

5. CONCLUSIONS 
In this paper, the two-point velocity 

method to estimate the roughness coefficient 

is re-investigate and a sensitive analysis is 

theoretically carried out and verified with 

experiment data.  This study shows that that 

the relative error in n is more sensitive to the 

relative errors in x (the error of the ratio of 

velocity at two-tenths the depth to that at 

eight-tenths the depth) than in relative error in 

depth. The smoother and deeper a channel, the 

more sensitive the relative error in estimated n 

is to the relative error in x. However, for 

rougher channels with shallow depth, the 

errors in velocity measurement may be higher 

because of higher disturbance of roughness 

elements. Accordingly, the relative errors in x 

are also higher, which will result in higher 

relative errors in n. Therefore, this method 

should be used to estimate roughness 

coefficients with caution because 

measurement errors were unavoidable and/or 

the assumption of logarithm velocity 

distribution may have been violated. 

 

REFERENCES  

 

Barnes, H.B. (1967). Roughness characteristics of natural channels. US Geological Survey Water-

Supply Paper 1849. 

Bray, D.I. (1979). Estimating average velocity in gravel-bed rivers. Journal of Hydraulic division, 

105, 1103-1122. 

Chow, V.T. (1959). Open channel hydraulics. New York, McGraw-Hill.  

Coon, W.F (1998). Estimation of roughness coefficients for natural stream channels with vegetated 

banks. U.S. Geological Survey Water-Supply Paper 2441. 

Dingman, S. L. & Sharma, K.P. (1997). Statistical development and validation of discharge 

equations for natural channels. Journal of Hydrology, 199, 13-35 

French, R.H. (1985). Open channel hydraulics. New York, McGraw-Hill.  

Hicks, D.M. and Mason, P.D. (1991). Roughness characteristics of New Zealand Rivers, DSIR 

Marine and freshwater, Wellington. 

Lacey, G. (1946). A theory of flow in alluvium. Journal of the Institution of Civil Engineers, 27, 

16-47. 

Ladson, A., Anderson, B., Rutherfurd. I., and van de Meene, S. (2002). An Australian handbook of 

stream roughness coefficients: How hydrographers can help. Proceeding of 11th Australian 

Hydrographic conference, Sydney, 3-6 July, 2002. 

Lang, S., Ladson, A. and Anderson, B. (2004a). A review of empirical equations for estimating 

stream roughness and their application to four streams in Vitoria. Australian Journal of Water 

Resources, 8(1), 69-82. 

Rajaratnam, N., Muralidhar, D., and Beltaos, S. (1976). "Roughness effects in rectangular free 

overfall", Journal of the Hydraulic Division, ASCE, 102(HY5), 599-614. 

Riggs, H.C. (1976). A simplified slope area method for estimating flood discharges in natural 

channels. Journal of Research of the US Geological Survey, 4, 285-291. 

Wahl, T. L. (2000). "Analyzing ADV Data Using WinADV", Proc. 2000 Joint Conference on Water 

Resources Engineering and Water Resources Planning & Management, Minneapolis, Minnesota, 

USA, 2.1-10. 

Zerihun, Y. T., and Fenton, J. D. (2004). "A one-dimensional flow model for flow over trapezoidal 

profile weirs", Proc. 6th International conference on Hydro-Science and Engineering, Brisbane, 

Australia, CD-ROM.  



  KHOA HỌC KỸ THUẬT THỦY LỢI VÀ MÔI TRƯỜNG - SỐ 64 (3/2019) 120 

Tóm tắt: 

PHÂN TÍCH ĐỘ NHẬY CỦA PHƯƠNG PHÁP XÁC ĐỊNH HỆ SỐ NHÁM 
 SỬ DỤNG TÀI LIỆU ĐO LƯU TỐC  

 
Việc xác định hệ số nhám Manning n có một ý nghĩa quan trọng trong tính toán thủy lực  nói chung 
và thủy lực dòng hở nói riêng. Một trong những phương pháp đo đạc dòng chảy trong sông khá phổ 

biến là đo lưu tốc tại hai điểm ở 0.8 và 0.2 lần của độ sâu dòng chảy. Những số liệu này có thể áp 

dụng để xác định hệ số nhám dựa trên qui luật phân bố logarit của vận tốc trong dòng chảy rối. Bài 
báo này khảo sát lại phương pháp xác định hệ số nhám sử dụng số liệu đo lưu tốc và phân tích độ 

nhạy của kết quả tính toán bằng lý thuyết và thực nghiệm. Kết quả cho thấy có thể sử dụng số liệu 

đo lưu tốc để xác định hệ số nhám trong các sông rộng với chế độ chảy rối. Kết quả cũng chỉ ra 
rằng sai số tương đối của hệ số nhám rất nhạy với sai số tương đối của tỉ số lưu tốc hai điểm (x).  

Kết quả lý thuyết và thực nghiệm cho thấy, đối với các sông có độ nhám càng nhỏ và độ sâu càng 

lớn thì sai số tương đối của hệ số nhám tính toán càng nhạy với sai số tương đối của x.  
Từ khóa: lòng dẫn hở, hệ số nhám, lưu tốc hai điểm, phân bố logarit. 

 

Ngày nhận bài:             01/3/2019 

Ngày chấp nhận đăng: 25/3/2019 

 


