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VISCOSITY SOLUTIONS OF THE AUGMENTED
k -HESSIAN EQUATIONS

Tran Van Bangllﬂ, Ha Tien Ngoan?,
Nguyen Huu Tho?, Phan Trong Tien*, Nguyen Lan Huong®

Abstract: In this paper, the Dirichlet problem for the augmented k — Hessian
equations in the bounded domain with nonsmooth data will be investigated. We
introduce the concept of (w,k)— convex function, show that all viscosity

subsolutions and supersolutions of the considering Dirichlet problem are (w, k) —

convex. Furthermore, we prove some sufficient conditions for the existence and
uniqueness of the viscosity solutions of the Dirichlet problem.
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1. INTRODUCTION

Let Q < R" be a bounded open set, M" be the set of all #xn symmetric matrices
with the norm given by Il Xll=max|x;|; for X,YeM’", X<Y means that
A<p,i=12,...,n,where A4 <A <..<A and g <p, <...<p, are eigenvalues of
X,Y, respectively; / is the unit matrix of order . In this paper, we study the Dirichlet

problem for the augmented k& — Hessian equations

(ke{l,2,...,n}) of the form:
~o, (u(D*v—(x,v, DV)I'* + f(x,v,Dv) =0, xeQ, 1)
v(x) =y(x), xed, (2)

where @:QOxRxR" >M" and  f:QxRxR” >R are given continuous

functions,

>0, u(X)=(g, -+, 14,) are n eigenvalues of X € M";
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are basic symmetric polynomials of degree k; y is a given continuous function

defined on 6. The minus sign in (1) was chosen to get the degenerate ellipticity of the
equation.

If k=n and w=0, Equation (1) becomes a Monge-Ampere equation

—det DVv+[f(x,v,Dv)]"=0, xeQ.

If k=1 and =0, Equation (1) becomes a nonlinear Poisson equation

—Av+ f(x,v,Dv)=0, xeQ.

Monge-Ampere equations, and Poisson equations in particular, k£ — Hessian

equations in general have many applications in various fields including Physics,
Geometric Curvatures, etc. [2], [5]-[8].

If the data of the problem are sufficiently smooth, classical solutions of Dirichlet
problems for Monge-Ampere equations have been studied, even for a more general class
of equations in [7], [8]. Meanwhile, classical solutions to (1)-(2) have been investigated
in [5] and further extended for oblique boundary value problems for the augmented
Hessian equations in [6]. If the data of the problem are nonsmooth, we need to study its
generalized solutions. The viscosity solutions for (1)-(2) have been studied by A.
Colesanti [2] in the case that @ =0 and f depends on x only. In this paper, we extend

several results of A. Colesanti for the general case mentioned above.

We first recall the notions and some essential results on viscosity solutions of elliptic
second order partial differential equations in finite dimensional space. A complete theory
can be found in [1]. To be more specific, consider the Dirichlet problem

F(x,v,Dv,D*v)=0, in€; v=wonoQ, 3)

where  is a continuous functionon 6Q; F is areal-valued continuous function on
QxR xR"xM", and satisfies the following two conditions

F(x,t,p, X)X F(x,t,p,Y), VX>Y 4)

(this condition is also known as the degenerate ellipticity of F') and

F(x,t, p, X)>F(x,5,p, X), ¥(x,p,X)eQxR"xM",Vt>s. %)
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A sufficient condition for (5) is: for each 0 < R < oo, there exists a constant C, >0:
F(x,t,p,X) 2 F(x,s, p, X)+C,(t—s), (6)

forall xeQQ R>t>s>-R, peR", X eM".
Regarding the dependence on x, we need the following assumption: for each

0 < R < oo, there is a real-valued continuous and nondecreasing function y,(7) satisfying

7x(1) >0 as 7 —0" such that
| F(x,t, p, X)=F(y,t, p, X) IS (| x = | (I+] p])), %

forany x,yeQ|t|<KR, peR", X eM".

We say that the function ¢ touches the function v from above (resp. below) at x, € €2,
if v—¢ attains its local maximum (resp. local minimum) at x, and v(x,) = @(x,).

The definition of viscosity solutions of (3) is given below.

Definition 1.1 ([1]). a) An upper semi-continuous function v on Q is said to be a
viscosity subsolution of the equation in (3) if for any ¢ € C*(Q) touching v from above

at x, €, we have

F(x0, (%)), D(x,), D’ ¢(x,)) < 0.
b) A lower semi-continuous function on Q is said to be a viscosity supersolution of

the equation in (3) if for any @ e C*(Q) touching v from below at x, € Q we have

F(x0,9(x,), Dp(x,), D*p(x,)) 2 0.
¢) A function v is a viscosity solution of the equation in (3) if v is both a viscosity
subsolution and a viscosity supersolution of it.

The existence and uniqueness of the viscosity solution of (3) has been established by
H. Ishii in the following result.

Theorem 1.2 ([4], Theorem II.1, Proposition I1.1). Let F' satisfy the conditions (4),
(6) and (7). If the equation in (3) has a viscosity subsolution Vv, and a viscosity
supersolution v, being locally Lipschitz on Q and v, =V, =¥ on 0Q then, there exists

a unique viscosity solution of the problem (3).
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Based on the preceding theorem, we derive several sufficient conditions for the
existence of a unique viscosity solution of the problem (1)-(2).

2. RESEARCH CONTENT

Let H, (¢4, 1,) =[0} (-, p1,)]"" and

F, (x,v, Dv,D*v) = —H, (u(D*v— a(x,v, Dv))) + f (x,v, Dv).

Then Equation (1) becomes

F (x,v,Dv, Dv)=0, xeQ.

Let

I, ={ueR” :aj(y) >0,Vj=12,---,k}.

It is well-known that (see [2])

F,={ueR":py,>0,Vj=12,-,n}, I''cl,Vi>j

Moreover, the k— Hessian operator H, (u(D’v)) is degenerate elliptic on I,.
Hence, in order to get the degenerate ellipticity of the function F,, we need to consider

the test functions @ € C*(Q2) such that z(D*p(x)—a(x,p(x), Dp(x))) €T,. This leads to

the definition of (w, k)— convexity as below.
Definition 2.1 Given a pair (w, k). A function v e C(Q) is said to be (@, k) — convex

on Q iff forany @€ C*(Q), ¢ touches v from below at X, € Q) we have
H(D*p(xy) — &(x,, p(x,), Dp(x,))) € T
It is clear that if ve C*(Q) and v is (w,k)—convex on Q then,
1(D*v(x) — (x,v(x), Dv(x))) eT p Vxel),
and for C* —functions, the (0,7)— convexity is exactly the usual convexity.

The following theorem establishes the (w,k)— convexity of the viscosity

supersolutions and viscosity subsolutions of (1).

Theorem 2.2 Suppose w,f are given continuous functions, f>0. If v is a

viscosity subsolution or a viscosity supersolution of (1) then, v is a (w,k)— convex

function on Q.
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Proof. We consider the case that v is a viscosity subsolution. The other case can be
handled analogously. Indeed, suppose that v is a viscosity subsolution of (1) but v is not

(w,k)— convex. Then, there exist x, €Q and a function ¢, € C*(Q), @, touches v

from below at x, € Q but
,u(Dz(po (%) = (x4, @, (X, ), Dy (x,))) & fk .
Let ¢ (x)= (oo(x)+% |x—x,[>,@>0. It can be seen that ¢, eC*(Q),

0, (x,)=0,(x,), Do, (x,)=Dg,(x,), Dz(pa (x,)= D2¢0 (x,)+al, ¢, touches v from

below at X, for any « >0. Thus, by the definition of viscosity subsolution, we have

o (1D Py (x,) + =%, @y (%), DRy (x,)))) 2 f (X5 2 (), Dy () > 0. ®)
On the other hand, for a sufficiently large «,
H(D*@y(x,) +al = axo, @y (X)), Dy (x)) €T, < T,
thus, we must have @, so that 1(D’@,(x,)+ a1 —&(x,,0,(x,), Dp,(x,))) € T, .
In other words, (by the continuity of o, ), we have
0 (D0, (x,) + o] = (x, 9y (%,), D@y (x,)))) =0,

which contradicts to (8). The conclusion follows.

In view of the preceding theorem, we can assume that the test functions in the

definition 1.1 are C* — functions and they are (w,k)—convex on Q and in the rest of this
paper, we consider only the elements (x,z, p, X) satisfying (X —a(x,t, p))eT,.

We proceed to provide additional conditions for @ and f to ensure the existence
and uniqueness of the viscosity solution to the problem under consideration.
Matrix-valued function w(x,z, p) satisfies the following conditions: For all R >0,

there exists a continuous function, nondecreasing 7, , on [0,0) satisfies
a)(xat’p)_a)(yat’p)gywﬂqx_y|(1+|pD)]a (9)
forany x,yeQ, [t|<R,peR";

det(_a)(-xatsp)) Z[f(-xatap)]ka (-xatap) eR” XRXR"; (10)
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w(x,t, p) is increasing with respect to the variable ¢; that is
a(x,t, p) > a(x,s, p), V(x,t, p),(x,s, p) e R"xRxR", £ >5s. (11)

For the function f, we assume that there exists a positive constant C, , and there

exists a real-valued single variable nondecreasing function y, ., which is right

continuous at 0 such that

St p)2 f(x,8,p)+C i(t=5), VxeQ,R2t>25>-R,peR"; (12)
|f(x5tap)_f(yatap) |S7/f,1e(|x_y| (1+|p|))> (13)

for any x,yeQ|t|I<R, peR".
It can be seen that (9)-(13) are satisfied if w=-a(x)I,f = f(x), a(x),f(x) are
real-valued, Lipschitz continuous, and positive on Q, ar(x) > f(x) +1.

We now establish a result on the existence and uniqueness of the viscosity solution
of Dirichlet problem (1)-(2).

Theorem 2.3. Let f >0 be a continuous function. Suppose the conditions (9), (11),
(12), (13) are satisfied. If the equation (1) has a viscosity subsolution v, and a viscosity

supersolution v, and they are locally Lipschitz on Q, v, =V, on 6Q, then there exists a

unique (w,k)— convex viscosity solution of the problem (1), (2).

Proof. Note that the degenerate ellipticity of F, has been established above. To

complete the proof, it is sufficient to check that (6), (7) are satisfied, then the conclusion
follows from Theorem 1.2.

Indeed, it follows from (11), the degenerate ellipticity of /, and (12) that

F;((X,t,p,X)—F;{(X,S,p,X) =Hk(y(X—a)(x,s,p)))—Hk(,u(X—a)(x,t,p)))
+f(x.t,p)-f(x.5,p)

Zf(x,t,p)—f(x,s,p)
2 C,L(t—s).

Moreover, for any 0 <R <o, X,y €Q[t|I<R, peR", X e M", it follows from (13)
that
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F.(xt,p,X)—F.(y.t,p,X) =—H, (X —a(x,t, p)) + f(x.t, p)
+H (u(X —a(y,t,p))— f(».1,p)
<SCyyon(x=y A+ p D) +7, 2 x=y | (+] p])
=(CyVpr + 7, ) x =y (+] p ).

In the above estimates, we used the convexity, the homogeneity of H,, (9), and

X-o(x,t,p) S X —a(y,t,p)+7, (| x—y|A+| p )]

that

H, (u(X —a(x,t, p)) S H (u(X —(y,t, p)+ 7, (| x=y | (1+] p D))
<H (X —a(y,t,p)+H (7, (| x=y |+ p)])
=H,(u(X = o(y,t, p)+C, 7, (| x=y |(1+] p]),

where C! is the number of & combinations of 7 elements.

Interchange the role of x and y, let y, =C! Yor TV x Weobtain

|Ec(xatast)_Ec(yat:p9X) |S 7R(|x_y|(l+|p|))
The conclusion follows.

By Theorem 2.3, the existence and uniqueness of the viscosity solution of the
problem (1)-(2) is reduced to the existence of a viscosity subsolution and a viscosity
supersolution in the class of local Lipschitz continuous functions of the given problem.
The following theorem provides a sufficient condition for the existence of such viscosity
sub- and supersolutions.

Theorem 2.4. Let Q be a strictly convex domain with 6QeC>* for

O<a<l;f>0 be a continuous function; tX be the trace of
X eM";0=w(x,t, p)=[w,(x,t, p)] be a matrix-valued function which is continuously

differentiable, and satisfies the following conditions:
i) @,(x,2,p)=0( p[);

ii) Y p,D, @,(x,z,p) <O( p[");
Jj=1

iii) (D +| p|* 3. p;D, ), (x,z,p) <o(| p[);
Jj=1
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as | p |— oo uniformly for x € Q and bounded z, for each i=1,2,...,n;

iv) there exist C,,C, 20 such that
—tro(x,z, psignz <G | p| 4G, V(x,z, p).

Moreover, suppose that (9)-(13) are satisfied and y € C**(0Q) . Then there exists a
unique viscosity solution of the problem (1)-(2).
Proof. By Theorem 2.3, it is sufficient to show that the problem (1)-(2) has a viscosity

subsolution and a viscosity supersolution.

We first show the existence of a viscosity supersolution. If 2 is convex, the Dirichlet
problem of Poisson equation

Av—tra(x,v,Dv)=0, xeQ,
v=y(x), xedQ

has a classical solution v (see [3], Theorem 15.10). We proceed to show that v is

a viscosity supersolution of the problem (1)-(2) by contradiction. Suppose v is not a
viscosity supersolution of (1) in €. Then, there exists a function ¢ € C*(Q), touching

v from below at x, € Q) such that

[o} (ﬂ(D2¢(xo) — Xy, P(x,), Do(x, ))))]l/k > f(xoa o(xy), Dp(x,)) >0.
It follows that
H(D*P(x,) = aX(xy, (%, ), Dp(x,))) € T, < T,

Hence
Ap(x,) = tr(e(xy, p(x,), Dp(x, ))) > 0. (14)
On the other hand, since ¢ touches v from below at x,,, we obtain
o(x,)=V(x,), Dp(x,)=Dv(x,), DV(x,)>Dp(x,).
It follows that Ag(x,) <Av(x,) and
Ap(xy) = tr(@x(x,, (%, ), DP(x;y))) < Av () = tr(@x(x,, v (x5), Dv(x,))) =0,

which contradicts (14).

We proceed to show the existence of a viscosity subsolution. A function ¢:R" — R

1s said to be an affine function if @ can be written as
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a(x,,-+,x,)=c,+cx,+--+cx,, withc, eR,i=1,2,---,n.

Let

S ={a:a is an affine function and a <y on 6Q}.

In view of (10), each element a € S is a viscosity subsolution of the (1)-(2). Let
v(x)=sup{a(x):aeS}. It is clear that v is a viscosity subsolution of (1). We need to

show that v=w on 0Q . Indeed, we have v <y ondQ. We show that
v(x) > yw(x) with x € 6Q. Without loss of generality, suppose x=0. Then x, =0 is a

supporting hyperplane to Q at 0 and x, >0 for any x=(x,---,x )€ By the
continuity of w, for any £ >0 there exists >0 such that |y (x)—w(0)|< & for any

| x|< 8, xedQ. Since oQ is strictly convex, there exists $>0 so that
QN {x=(x,x,):x <9 {x]x|<5}.

Let K:=min{y(x):x € x, 23}. Then the affine function a(x)=w(0)—&—Lx,
with L >max{(y(0)—e—K)/9,0} satisfies a(0)>w(0)—¢ and a(x)<w(x) with
xeoQ . Since aeS,v>a . In particular, v(0)>a(0)>w(0)—¢, letting &6 >0 we
obtain v(0) >y /(0). Thus, v =y on oQ.

3. CONCLUSION

In this paper we have established several sufficient conditions for the existence and
uniqueness of continuous viscosity solutions for Dirichlet problem of the augmented & —
Hessian equations with nonsmooth data. We have also proved the (w,k)— convexity of

the viscosity solutions. Our results are extensions of results in Colesanti [2].
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NGHIEM NHO'T CUA PHU'ONG TRINH KIEU K — HESSIAN

Trdn Vin Bdang, Ha Tién Ngoan,
Nguyén Hivu Tho, Phan Trong Tién, Nguyén Lan Hwong

Tém tat: Bai bao nay nghién ctru bai toén Dirichlet dbi véi phuong trinh kiéu k —
Hessian trong mién bj chdn véi div kién khéng nhat thiét tron. Chung toi gidi thiéu
khai niém ham (w, k) — 16i, chi ra rang moi nghiém dudi nhét, nghiém trén nhét cta
bai toan Dirichlet déu la (c,k)— 16i, dong thoi ching minh mét sé diéu kién da vé
sw tén tai va tinh duy nhat nghiém nhét cda bai toan Dirichlet dang xét.

Twr khéa: Phuong trinh kiéu k — Hessian, nghiém nhoét.

(Ngay Toa soan nhan dwoc bai: 25-8-2022; ngay phan bién danh gia: 26-8-2022;
ngay chap nhéan déng: 29-8-2022)
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