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ABSTRACT 

Viability theory designs and develops mathematical and algorithmic methods that can be 
found in many domains such as living beings, biological evolution, economics, environmental 
sciences, financial markets or control theory, and robotics. In the paper, we provide sufficient 
conditions assuring the existence of viable solutions of differential inclusions with fractional 
derivatives with delay: 

𝐷𝐷𝐶𝐶
𝑞𝑞𝑥𝑥(𝑡𝑡) ∈ 𝐹𝐹(𝑡𝑡, 𝑥𝑥𝑡𝑡), 0 < 𝑞𝑞 < 1, 𝑡𝑡 ∈ 𝐼𝐼 ≔ [0,𝑇𝑇]. 

We were inheriting the ideas of Carja, Donchev, Rafaqat, and Ahmed (2014) and  Girejko 
(2018), we give the condition of tangency and the concept of approximate solution, these are 
compatible with our problem. Thanks to Brezis-Browder Theorem, we prove the existence of an 
approximate solution to the interval [0,T]. Then, passing to the limit, the sequence of approximate 
solutions convergent to the viable solution. These results generalize the corresponding results  
by Carja et al. (2014), Girejko, Mozyrska, and Wyrwas (2011), Vasundgaradevi and 
Lakshmikantham (2009).  

Keywords: delay; Fractional Derivative; Inclusion; Viable solution 
 

1. Introduction  
The first definition of the fractional derivative was introduced at the end of the 19th 

century by Liouville and Riemann. Still, the concept of non-integer derivative and integral, 
as a generalization of the traditional integer-order differential and integral calculus, was 
mentioned already in 1695 by Leibniz and L’Hospital. However, only in the late 1960s did 
engineers start to be interested in this idea when the fact that descriptions of some systems 
are more accurate in “fractional language” appeared. Since then, fractional calculus has been 
increasingly used to model behaviors of natural systems in various fields of science and 
engineering. Recently, several authors have reported new results concerning the solutions 
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for nonlinear fractional differential equations (Diethelm, 2010; Kosmatov, 2009; Zhang, 
2009), (Bonilla, Rivero, Rodriguez-Germá, & Trujillo, 2007), (Agarwal, Lakshmikantham, 
& Nieto, 2010), (Luchko, Rivero, Trujillo, & Velasco, 2010), (Wei, Li, & Che, 2010), 
(Diethelm & Ford, 2002).  

Viability theory has its origin in the Nagumo theorem (Nagumo, 1942), in which 
necessary and sufficient condition was stated for a differential equation to have a viable 
solution. A viable solution means a solution initiated in a set of constraints and staying in 
this set for a certain amount of time. Nowadays, viability theory designs and develops 
mathematical and algorithmic methods that can be found in many domains such asliving 
beings, biological evolution, economics, environmental sciences, financial markets or 
control theory, and robotics. This theory joins fields of science that have been traditionally 
developed in isolation into one interdisciplinary investigation (Aubin, Bayen, & Saint-
Pierre, 2011). All this gives a motivation to combine viability theory with fractional calculus. 
To the best of our knowledge, there are only a few papers devoted to this subject (Carja et 
al., 2014), (Girejko et al., 2011), (Mozyrska, Girejko, & Wyrwas, 2011), (Vasundgaradevi 
& Lakshmikantham, 2009). The viability problem for fractional differential equations was 
studied some studies (Girejko et al., 2011), (Mozyrska et al., 2011), (Vasundgaradevi & 
Lakshmikantham, 2009). Unfortunately, in both papers (Girejko et al., 2011), 
(Vasundgaradevi & Lakshmikantham, 2009), the proofs of the existence of viable solutions 
are not correct because the tangency conditions proposed by the authors are not appropriate. 
The viability property was first introduced by (Carja et al., 2014) for the Caputo derivative. 
The authors give proper tangency conditions that ensure viable solutions for a class of 
fractional differential inclusions. 

DC
qx(t) ∈ F�t, x(t)�, 0 < q < 1, t ∈ I ≔ [0, T], x(0) = x0 ∈ ℝn.  

Then (Girejko, 2018) inherits the previous tangency condition for Caputo-Fabrizio 
derivative.  

We denote ‖⋅‖ as the norm on ℝn. This paper studies the viability properties of 
solutions to nonlinear fractional differential inclusions with delay 

DC
qx(t) ∈ F(t, xt), 0 < q < 1, t ∈ I ≔ [0, T], (1) 

satisfying the initial condition  
x(t) = ψ(t), t ∈ [−r, 0], 

where T > 0,ψ ∈ Cr ≔ C([−r, 0];ℝn) with ‖ψ‖0 = sup
t∈[−r,0]

‖ψ(t)‖  

We consider x: [−r, T] → ℝn. Fix t ∈ [0, T], we set xt: [−r, 0] → ℝn is defined by 
xt(θ) = x(t + θ), θ ∈ [−r, 0]. 
The set valued map F: [0, T] × Cr → P(ℝn) (2) is upper semicontinuous with 

nonempty convex and compact values. Further, there exists a constant α > 0 such that 
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‖F(t, v)‖∗ = sup{‖z‖: z ∈ F(t, v)} ≤ α(1 + ‖v‖0) 
for all (t, v) ∈ [0, T] × Cr.  

2. Viability for delay fractional differential inclusion 
2.1. Preliminaries 
Definition 2.1.1. (Caputo derivative) Let x ∶  [a, b] →  ℝn be continuous with Lebesgue 
integrable derivative. The Caputo fractional derivative Dc

qx(t) of order 0 <  q <  1 is 
defined by 

Dc
qx(t) =

1
Γ(1− q)� x′(τ)(t − τ)−qdτ

t

0

, a < t < b. 

Definition 2.1.2. (Upper semicontinuous) The multi-function F: I × Cr → P(ℝn) is upper 
semicontinuous (u.s.c.) at ξ ∈ 𝐼𝐼 × Cr if for every open neighborhood V of F(ξ) there exists 
an open neighborhood U of ξ such that F(η) ⊂ V for each η ∈ U. 
Definition 2.1.3. (Mild solution) The continuous function x ∈ AC([−r, T],ℝn) is called a 
mild solution of (1) if there exists a selection mapping fx(t) ∈ F(t, xt) such that for every 
t ∈ I we have 

x(t) = ψ(0) +
1

Γ(q)�
(t − s)q−1fx(s)ds
t

0

, 0 ≤ t ≤ T 

and x(t) = ψ(t), t ∈ [−r, 0]. 
According to Lemma 3.1 (Zhou & Peng, 2016), when F satisfies (2), we have 

SelF(x) = {f ∈ L1(I,ℝn): f(t) ∈ F(t, xt) for a. e. t ∈ I} ≠ ∅,∀x ∈ C([−r, T],ℝn). 
Definition 2.1.4. (Viable solution) Let closed set Ω ⊂ ℝn and KΩ = {ψ ∈ Cr:ψ(0) ∈ Ω}. 
We say KΩ is viability if for every ψ ∈ KΩ, there exists T > 0 such that (1) has mild solution 
x: [−r, T] → ℝn satisfies xt ∈ KΩ,∀t ∈ I. We call x is a corresponding viable solution.  
Noticing: 

 xt(θ) = x(t + θ)  
 xt ∈ KΩ,∀t ∈ I ⟺ xt(0) ∈ Ω,∀t ∈ I ⟺ x(t) ∈ Ω,∀t ∈ I. 

2.2. Tangency condition 
Definition 2.2.1. Suppose t ̅ ∈ I. Given E ⊂ ℝn and g ∈ L∞(I,ℝn). We define yg: [−r, T] →
ℝn by 

yg(t) = ψ(0) + � (t − s)q−1g(s)ds
t

0
,∀t ∈ I. 

We say the pair (g, E) is tangent to I × KΩ at (t,̅φ) ∈ I × KΩ if �yg�0 = φ and 

liminfh→0+ h−qdist �φ(0) + Φ(t ̅; g)(h) +
hq

Γ(q + 1) E;Ω� = 0, (3)  

with 
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Φ(t;̅ g)(h) =
1

Γ(q)�
[(t ̅+ h − s)q−1 − (t ̅ − s)q−1]g(s)ds
t̅

0
.  

Remark: If we replace Cr with ℝn and xt with x(t) we get the exact tangency condition that 
was introduced in (Carja et al., 2014). 
Proposition 2.2.2. (g, E) is tangent to I × KΩ at (t,̅φ) ∈ I × KΩ if and only if: for each 0δ >  
and each ε > 0, there exist h ∈ (0, δ) and v ∈ E, p ∈ ℝn satisfy |p| < ε such that 

φ(0) + Φ (t;̅ g)(h) +
hq

Γ(q + 1)
(v + p) ∈ Ω. 

Proof. 
 We see (3) is equivalent to 

sup
δ>0

inf
h∈(0,δ)

h−qdist �φ(0) + Φ(t ̅; g)(h) +
hq

Γ(q + 1) E;Ω� = 0. 

 In its turn, this relation is equivalent to: for each δ > 0 and each ε > 0, there exist h ∈
(0, δ) such that 

dist �φ(0) + Φ(t;̅ g)(h) +
hq

Γ(q + 1) E;Ω� <
εhq

Γ(q + 1). 

Since dist(C, D) < α if and only if there exist x ∈ C and y ∈ B(0,α) such that x + y ∈
D. we finally deduce that (3) equivalent to: for each 0δ >  and each ε > 0, there exist h ∈
(0, δ) , v ∈ E and p ∈ ℝn satisfy |p| < ε and 

φ(0) + Φ (t;̅ g)(h) +
hq

Γ(q + 1)
(v + p) ∈ Ω. ∎ 

2.3. Approximate solution 
We recall the Henry–Gronwall inequality (see Lemma 7.1.1 by Henry (1981)), which 

can be used in fractional differential equations and integral equations with a singular kernel. 
Lemma 2.3.1. Let u: [0, b] → [0,∞) be a real function and v be a nonnegative, locally 
integrable function on [0, b]. Suppose there are constants a >  0 and 0 < α < 1 such that 

u(t) ≤ v(t) + a� (t − s)α−1
t

0
u(s)ds. 

Then, there exists a constant K = K(α) such that  

u(t) ≤ v(t) + Ka� (t − s)α−1
t

0
v(s)ds. 

From now on, we fix the closed set Ω ⊂ ℝn and ψ ∈ KΩ. 
Definition 2.3.2. Let ε ∈ (0,1), 0 ≤ θ ≤ T. We say that a quarter (σ, f, g, y) is an ε-solution 
to (1) on the interval [−r, θ] if the non-decreasing function σ: [0, θ] → [0, θ], the measurable 
function f: [0, θ] → ℝn, the integrable function g: [0, θ] → ℝn and continuous function 
y: [−r, θ] → ℝn satisfy 
 (i) t − ε ≤ σ(t) ≤ t for every t ∈ [0, θ]; 
 (ii) ‖g(t)‖  ≤ ε for every t ∈ [0, θ]; 
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 (iii) y�σ(t)� ∈ Ω for every t ∈ [0, θ ] and y(θ) ∈ Ω; 
 (iv) f(t) ∈ F�σ(t), yσ(t)� such that 

y(t) = y(0) +
1

Γ(q)�
(t − s)q−1[f(s) + g(s)]ds
t

0

 

for every t ∈ [0, θ]; 
 (v) y0 = ψ. 
Lemma 2.3.3. There exists N > 0 such that for every ε > 0 , 0 ≤ θ ≤ T, and every ε-solution 
(σ, f, g, y) to (1) on the interval [−r, θ], we have 

‖y‖C([−r,θ],ℝn) ≤ N. 
Proof. 
Noticing, 

y(t) ≔ ψ(0) +
1

Γ(q)�
(t − s)q−1[f(s) + g(s)]ds
t

0

, 

where f(s) ∈ F�σ(s), yσ(s)� and y(t) = ψ(t), t ∈ [−r, 0]. Thanking to (2), we have  

‖y(t)‖ ≤ |ψ(0)| +
1

Γ(q)�
(t − s)q−1 �α + 1 + α�yσ(s)�0� ds
t

0

, 0 ≤ t ≤ θ. 

Put w(t) = sup{‖y(s)‖:−r ≤ s ≤ t}. Using the above inequality and the definition of w, 
we have that 

w(t) ≤ ‖ψ‖0 +
α + 1

Γ(q + 1) +
α

Γ(q)�
(t − s)q−1w(s)ds
t

0

 

Lemma 3 implies 

w(t) ≤ ‖ψ‖0 +
α + 1

Γ(q + 1) +
Kα
Γ(q) �

‖ψ‖0 +
α + 1

Γ(q + 1)��
(t − s)q−1ds
t

0

 

≤ ‖ψ‖0 +
α + 1

Γ(q + 1) +
KαTq

Γ(q + 1) �
‖ψ‖0 +

α + 1
Γ(q + 1)� ≔ N,∀t ∈ [0, θ]. 

Thus 
‖y‖C([−r,θ],ℝn) ≤ N.                                                                                                      

Proposition 2.3.4. Let ε ∈ (0,1), 0 ≤ θ ≤ T and let (σ, f, g, y) be ε −solution on [−r, θ] of 

(1). If the pair �Dc
qy; F(θ, yθ)� is tangent to I × KΩ at (θ, yθ) ∈ I × KΩ then there exist δ >

0 and an extension (σ1, f1, g1, z) of (σ, f, g, y) which is ε −solution of (1) on [−r; θ + δ]. 
Proof. 
 Proposition 6 implies that there exist h ∈ (0, ε) and v ∈ F(θ, yθ), p ∈ ℝn, |p| < ε  
such that 
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y(θ) + Φ �θ; Dc
qy�(h) +

hq

Γ(q + 1)
(v + p) ∈ Ω. (4) 

We claim that there exists δ = h > 0 such that z is defined on [−r; θ + δ] by  

z(t) = y(θ) + Φ �θ; Dc
qy�(t − θ) +

(t − θ)q

Γ(q + 1)
(v + p), t ∈ [θ; θ + δ] (5) 

and z(t) = y(t), t ∈ [−r, θ] is ε −solution. It is clear that Property (v) is satisfied. 
Denoting σ1(t) = θ,  g1(t) = p,  f1(t) = v on [θ; θ + δ]. We see propositions (i), and (ii) are 
satisfied. 
Since y be ε −solution on [−r, θ] of �Pψ� , we have z�σ(t)� = y(θ) ∈ Ω.  

From (4) we see z(θ + δ) = y(θ) + Φ �θ; Dc
qy�(h) + hq

Γ(q+1)
(v + p) ∈ Ω. 

Hence Property (iii) is satisfied. 
Since y is ε −solution on [−r, θ] of (1), there exist non-decreasing function σ: [0, θ] →
[0, θ], the integrable function g: [0, θ] → ℝn , and measurable selection f1(t) ∈
F�σ(t), yσ(t)� such that 

y(t) = y(0) +
1

Γ(q)�
(t − s)q−1[f1(s) + g(s)]ds
t

0

 

for every t ∈ [0, θ]. So Dc
qy(t) = f1(t) + g(t) for every t ∈ [0, θ]. 

From (5) we have  

z(t) = y(θ) +
1

Γ(q)�
[(t − s)q−1 − (θ − s)q−1]Dc

qy(s)ds
θ

0
  

+
1

Γ(q)�
(t − s)q−1[f1(s) + g(s)]ds
t

θ

. 

Furthermore, 

y(θ) = y(0) +
1

Γ(q)�
(θ − s)q−1Dc

qy(s)ds.
θ

0
 

So 

z(t) = y(0) +
1

Γ(q)�
(t − s)q−1Dc

qy(s)ds
θ

0
+

1
Γ(q)�

(t − s)q−1[f1(s) + g(s)]ds
t

θ

 

= y(0) +
1

Γ(q)�
(t − s)q−1[f1(s) + g(s)]ds
θ

0
+

1
Γ(q)�

(t − s)q−1[f1(s) + g(s)]ds
t

θ

 

= z(0) +
1

Γ(q)�
(t − s)q−1[f1(s) + g(s)]ds
t

0

. ∎ 
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We set  
ℳ = {(θ,ϕ) ∈ I × KΩ: ∀ ε > 0,∃ ε − solution (σ, f, g, y) on [0, θ],  yθ = ϕ}. 

Suppose �ψ, F(0,ψ)� is tangent to I × KΩ at (0,ψ) ∈ I × KΩ. Then, according to 
Proposition 6, we see ℳ ≠ ∅. 
Definition 2.3.5. Inclusion (1) would satisfy tangency condition at (θ,ϕ) ∈ ℳ if for each 

ε > 0, the pair �Dc
qy; F(θ, yθ)� is tangent to I × KΩ at (θ, yθ) ∈ I × KΩ, with (σ, f, g, y) is 

ε −solution on [0, θ]. 
Lemma 2.3.6. (Brezis-Browder Theorem) Let 𝒮𝒮 be a nonempty set, ≼ a preorder on 𝒮𝒮, and 
let ℳ: 𝒮𝒮 → ℝ ∪ {+∞} be a function. Suppose that: 

(i) for any increasing sequence (ξk)k ⊂ 𝒮𝒮, there exists some η ∈ 𝒮𝒮 such that ξk ≼ η, for 
all k ∈ ℕ; 

(ii) the function ℳ is increasing. 
Then for each ξ ∈ 𝒮𝒮 there exists an ℳ− maximal element ξ̅ ∈ 𝒮𝒮 satisfying ξ ≼ ξ̅. 
Lemma 2.3.7. If �ψ, F(0,ψ)� is tangent to I × KΩ at (0,ψ) ∈ I × KΩ and (1) is tangent at 
every (θ,ϕ) ∈ ℳ, for each ε ∈ (0,1), there exists ε −solution (σ, f, g, y) determined on the 
entire [−r, T]. 
Proof. 
 Fix ε ∈ (0,1). Let 𝒮𝒮 be the set of all ε −approximate solutions to the initial value 
problem (1) defined on the interval [0, c] with c ∈ [0, T]. On 𝒮𝒮 we define the relation “ ≼ ” 
by (σ1, f1, g1, x1) ≼ (σ2, f2, g2, x2) if [0, c1] ⊆ [0, c2] and the two ε −approximate solutions 
coincide on the common part of the domains. 
 Let �(σm,𝑓𝑓𝑚𝑚, gm, xm)�

m
 be an increasing sequence defined on [0, cm], and let c∗ =

lim
m→∞

cm. Clearly, c∗ ∈ [0, T]. Let us now prove the existence of lim
m→∞

xm(cm). Note that for 

each m, k ∈ ℕ, m ≤ k, we have σm(s) = σk(s), gm(s) = gk(s) and xm(s) =
xk(s),  fm(s) = fk(s) for all s ∈ [0, cm]. Moreover, cm − ε ≤ σm(cm) ≤ cm.  
Noticing, for every m ∈ ℕ, 

xm(t) ≔ ψ(0) +
1

Γ(q)�
(t − s)q−1[fm(s) + g(s)]ds
t

0

, 

where fm(s) ∈ F�σm(s), (xm)σm(s)� and xm(t) = ψ(t), t ∈ [−r, 0]. 
By virtue of Lemma 9, we have 

‖xm‖C([−r,cm],ℝn) ≤ N. (6) 
This implies 

�(xm)σm(s)�0 ≤ N,∀s ∈ [0, cm]. 

Furthermore ‖F(t, v)‖ ≤ α(1 + ‖v‖0),∀v ∈ Cr so 
�F�σm(s), (xm)σm(s)��∗ ≤ α(1 + N) ≔ M,∀s ∈ [0, cm]. 
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We have 

‖xk(ck) − xm(cm)‖ =
1

Γ(q)��
(ck − s)q−1 ∙ [fk(s) + g(s)]ds

ck

0

 

−� (cm − s)q−1 ∙ [fm(s) + g(s)]ds

cm

0

� 

=
1

Γ(q)��
[(ck − s)q−1 − (cm − s)q−1][fm(s) + g(s)]ds

cm

0

 

+ � (ck − s)q−1 ∙ [fk(s) + g(s)]ds

ck

cm

� 

≤
M + ε
Γ(q) ∙ �� [(ck − s)q−1 − (cm − s)q−1]ds

cm

0

+ � (ck − s)q−1ds

ck

cm

� 

=
M + ε
Γ(q) ∙ �� (ck − s)q−1ds

ck

0

− � (cm − s)q−1ds

cm

0

� 

=
M + ε
Γ(q + 1) ∙ �ck

q − cm
q � 

for every k, m ∈ ℕ. We know that lim
m→∞

cm = c∗, so lim
m→∞

cm
q = (c∗)q. Then for �ck

q − cm
q � ≤

Γ(q+1)
 M+ε

∙ ε1 we get ‖xk(ck) − xm(cm)‖ ≤ ε1, what proves the existence of lim
m→∞

xm(cm). Note 

that xm(cm) ∈ Ω. The set Ω is closed, so lim
m→∞

xm(cm) ∈ Ω. 

All the functions in the set {σm: m ∈ ℕ} are non-decreasing with values in [0, c∗] and satisfy 
σm(cm) ≤ σk(ck) for m, k ∈ ℕ, m ≤ k. Hence there exists lim

m→∞
σm(cm) and this limit 

belongs to [0, c∗]. Therefore the quartet of function (σ∗, f ∗, g∗, x∗): [0, c∗] → [0, c∗] × ℝn ×
ℝn × ℝn can be defined by 

 σ∗(t) = �
σm(t) for t ∈ [0, cm], m ∈ ℕ,

lim
m→∞

σm(cm)  for t = c∗,  (7) 

 g∗(t) = �gm(t) for t ∈ [0, cm], m ∈ ℕ,
0 for t = c∗,  (8) 

 x∗(t) = �
xm(t) for t ∈ [0, cm], m ∈ ℕ,

lim
m→∞

xm(cm)  for t = c∗.  (9) 

 f ∗(t) = �fm
(t) for t ∈ [0, cm], m ∈ ℕ,

η∗ for t = c∗.  (10) 
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where η∗ is an arbitrary but fixed element in F�c∗, x∗(σ∗(c∗))�. 
One can see that (σ∗, f ∗, g∗, x∗) is an ε-approximate solution for all m ∈ ℕ 

(σm, fm, gm, xm) ≼ (σ∗, f ∗, g∗, x∗). 
Let us define the function ℳ: 𝒮𝒮 → ℝ ∪ {+∞} by ℳ�(σ, f, g, x)� = c, where (σ, f, g, x) 

is defined on [0, c]. Then by the Brezis-Browder Theorem, 𝒮𝒮 consists of at least one ℳ-
maximal element �σ�, f,̅ g�, x�� defined on [0, c], i.e. for every �σ�, f̃, g�, x�� ∈ 𝒮𝒮 such that 

�σ�, f,̅ g�, x�� ≼ �σ�, f̃, g�, x�� we have ℳ��σ�, f,̅ g�, x��� = ℳ��σ�, f̃, g�, x���, which means that c� = c�. 

By Proposition 10, we get c� = T. Therefore the existence of an ε −approximate solution 
defined on the whole interval [0, T] was proved.  ∎ 
2.4. Proof of the main result 

Before presenting proof of the main theorem, we will introduce some supporting 
results. 

Definition 2.4.1. A subset G ⊂ L1(I,ℝn) is called uniformly integrable if for ε > 0, there 
exists δ > 0 such that  

�‖f(t)‖
E

dt < ε 

for each measurable subset E ⊂ I, whose Lebesgue measure is more minor than δ, and 
uniformly for f ∈ G. 
Theorem 2.4.2. (Theorem 1.3.7 by Dunford-Pettis theorem) G ⊂ L1([0, T],ℝn) is weakly 
compact if and only if it is uniformly integrable. 
Now we give the proof of the main result. 
Theorem 2.4.3. If (2) is satisfied, �ψ, F(0,ψ)� is tangent to I × KΩ at (0,ψ) ∈ I × KΩ and 
(1) satisfies tangency condition at every (θ,ϕ) ∈ I × KΩ, KΩ is viable. 

Proof. 
Let (εk)k∈ℕ be a decreasing sequence such that εk ∈ (0, 1) and lim

k→∞
εk = 0. Let 

�(σk, fk, gk, xk)�
k∈ℕ

 be a sequence of εk-approximate solutions defined on the interval [0, T]. 
From (i) and (ii) of definition 8, we get the following uniform convergence on [0, T]: 

lim
k→∞

σk(t) = t, (11) 

lim
k→∞

gk(t) = 0. (12) 

 As a result of Lemma 13, the sequence (xk)k∈ℕ is uniformly bounded on [0, T]. 

Moreover, for 0 ≤ t1 ≤ t2 , with fk(s) ∈ F �σk(s), xk�σk(s)��, we get  
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‖xk(t1) − xk(t2)‖ = ‖xk(t1) − ψ(0) − xk(t2) + ψ(0)‖ 

=
1

Γ(q)��
(t1 − s)q−1 ∙ [fk(s) + g(s)]ds

t1

0

− �(t2 − s)q−1 ∙ [fk(s) + gk(s)]ds

t2

0

� 

=
1

Γ(q)��
[(t1 − s)q−1 − (t2 − s)q−1] ∙ [fk(s) + gk(s)]ds

t1

0

− �(t2 − s)q−1 ∙ [fk(s) + g(s)]ds

t2

t1

� 

≤
M + εk
Γ(q) ∙ �� [(t1 − s)q−1 − (t2 − s)q−1]ds + �(t2 − s)q−1ds

t2

t1

t1

0

� 

 ≤ M+1
Γ(q+1) ∙ �t1

q − t2
q + 2(t2 − t1)q� 

 ≤ M+1
Γ(q+1) ∙ 3(t2 − t1)q < ε 

provided |t2 − t1| ≤ δ = �εΓ(q+1)
3(M+1)�

1
q. Hence the sequence (xk)k∈ℕ is equicontinuous on 

[0, T]. Since the sequence (xk)k∈ℕ is bounded and equicontinuous, it has a uniformly 
convergent subsequence and keeps the same notations by the Arzelà–Ascoli Theorem. 
Hence �xki�i is uniformly convergent on [0, T] to a function x: [0, T] → ℝn. Taking into 

account the fact that Ω is closed, xk�σk(t)� ∈ Ω, xk(T) ∈ Ω. Since (xk)k∈ℕ is equicontinuous 
and condition (11) with we deduce that lim

k→∞
xk�σk(t)� =  x(t). This implies that x(t) ∈ Ω 

for every t ∈ I.  
 By cause of (xk)k∈ℕ is uniformly bounded on I and (2), we get {fk}k is uniformly 
integrable in L1(I,ℝn). As long as Theorem 15, we take a subsequence of {fk}k and keeping 
the same notations, we may assume that it converges weakly in L1(I,ℝn) to some f ∈
L1(I,ℝn). By the Mazur lemma, there exist λin ≥ 0, i = n, … , k(n), such that ∑ λin

k(n)
i=n = 1, 

and the sequence hn ≔ ∑ λinfi
k(n)
i=n  converges to f in L1(I,ℝn). By a classical result due to 

Lebesgue, we know that there exists a subsequence �hnj�j
 converges to f almost everywhere. 

Hence for every t ∈ I, 

lim
j→∞

� (t − s)q−1hnj(s)ds
t

0
= � (t − s)q−1f(s)ds

t

0
. 
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Since (xk)k converges uniformly to x, for every t ∈ I we get 

x(t) = lim
j→∞

� λi
njxi

k�nj�

i=nj

(t) 

= lim
j→∞

�ψ(0) +
1

Γ(q)�
(t − s)q−1 �� λi

njfi

k�nj�

i=nj

(s) + � λi
njgi

k�nj�

i=nj

(s)�ds
t

0

� 

= ψ(0) +
1

Γ(q)�
(t − s)q−1f(s)ds
t

0

. 

 Put x(t) = ψ(t),∀t ∈ [−r, 0].  
 To end the proof, it is enough to show that 𝐟𝐟(𝐬𝐬) ∈ 𝐅𝐅(𝐬𝐬, 𝐱𝐱𝐬𝐬) almost everywhere in 
s ∈ [𝟎𝟎,𝐓𝐓].  
 Let 𝐄𝐄 be an open half-space in ℝn including 𝐅𝐅(𝐬𝐬, 𝐱𝐱𝐬𝐬). Since (xk)k is uniformly 
convergent on [0, T] to x and lim

k→∞
σk(s) = s, we have (xk)σk(s) converges to xs in Cr. Since 

𝐅𝐅 is u.s.c. at (𝐬𝐬, 𝐱𝐱𝐬𝐬), there exists k(E) belonging to ℕ, such that F�σk(s), (xk)σk(s)� ⊂ 𝐸𝐸 for 
each k ≥ k(E). From the relation above, taking into account that fk(s) ∈
F�σk(s), (xk)σk(s)�, for each k ∈ ℕ and a.e. for s ∈ [0; T], we can conclude that 

hnj(s) ∈ co����∪k≥k(E) F�σk(s), (xk)σk(s)� � 

for each j ∈ ℕ with nj ≥ k(E). Passing to the limit for j → ∞ in the relation above, we deduce 
that f(s) ∈ E�. Since 𝐅𝐅(𝐬𝐬, 𝐱𝐱𝐬𝐬) is closed and convex, it is the intersection of all closed half-
spaces which include it. So, in as much as E was arbitrary, we finally get f(s) ∈ 𝐅𝐅(𝐬𝐬, 𝐱𝐱𝐬𝐬) 
almost everywhere in s ∈ [𝟎𝟎,𝐓𝐓].  ∎ 
3. Conclusion 
 In this paper, we inherit the existing schemas to consider the viability of delay 
fractional differential inclusions. The new results presented in this paper include: 

• Give a suitable tangency condition for this problem. 
• Propose the concept of 𝜖𝜖 − solution and apply it to prove the existence of a  

viable solution. 
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TÓM TẮT 

Lí thuyết viability ra đời và phát triển, được ứng dụng trong nhiều lĩnh vực như sinh vật sống, 
tiến hóa sinh học, kinh tế học, khoa học môi trường, thị trường tài chính hoặc lí thuyết điều khiển và 
robotics. Trong bài báo này, chúng tôi đưa ra một điều kiện đủ cho sự tồn tại nghiệm vible của bao 
hàm thức vi phân bậc không nguyên có đối số lệch dạng 

𝐷𝐷𝐶𝐶
𝑞𝑞𝑥𝑥(𝑡𝑡) ∈ 𝐹𝐹(𝑡𝑡, 𝑥𝑥𝑡𝑡), 0 < 𝑞𝑞 < 1, 𝑡𝑡 ∈ 𝐼𝐼 ≔ [0,𝑇𝑇]. 

Kế thừa những ý tưởng của (Carja, Donchev, Rafaqat, & Ahmed, 2014), (Girejko, 2018), 
chúng tôi đưa ra điều kiện tiếp xúc và khái niệm nghiệm xấp xỉ phù hợp với cấu trúc bài toán. Theo 
định lí Brezis-Browder, chúng tôi thu được nghiệm xấp xỉ trên toàn bộ đoạn [0,T]. Bằng cách cho 
qua giới hạn, dãy nghiệm xấp xỉ hội tụ về nghiệm viable. Kết quả này tổng quát các kết quả đã có 
trong các bài báo (Carja et al., 2014), (Girejko, Mozyrska, & Wyrwas, 2011), (Vasundgaradevi & 
Lakshmikantham, 2009).  

Từ khóa: nghiệm viable; đối số lệch; bao hàm thức; đạo hàm bậc không nguyên 
 


