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INVESTIGATION OF FREE VIBRATION OF FGP PLATES
PARTIALLY SUPPORTED BY ELASTIC FOUNDATION
USING FINITE ELEMENT METHOD

PHAN TICH DAO DONG RIENG CUA TAM FGM 0 LO RONG (FGP)
DAT MOT PHAN TREN NEN DAN HOI BANG PHUGNG PHAP PHAN TU HUU HAN
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ABSTRACT

The main goal of this article is to use a finite element method (FEM) based
on Mindlin plate theory for analyzing the free vibration of the functionally
graded porous (FGP) plate partially supported by elastic foundation (EF). The
EF is Pasternak foundation model includes spring stiffness (k,) and shear layer
stiffness (k,). The FGP materials with two-parameter are the power-law index
(k) and the porosity volume fraction (§) in two cases of even and uneven
porosity. Some numerical results in our work are compared with other
published to verify accuracy and reliability. Moreover, the effect of the elastic
foundation on the free vibration of FGP plates is also fully investigated.

Keywords: FEM, Functionally Graded Porous, Elastic Foundation,
Rectangular plates.

TOM TAT

Bai bdo st dung phuang phap phan t& hitu han (FEM) dua trén ly thuyét
tdm Midlin @€ phan tich dao dong tu do cia tdm béng vat liéu co tinh bién
thién c6 16 rong (FGP) dugc dat mot phan trén nén dan hoi (EF). Nén dan héila
nén Pasternak gom ¢6 dd cting 10 xo k, va dd ciing 16p chdng cat k. Vét liéu
xGp FGP gdm hai tham s6 la chi s6 mii thé tich (k) va hé s6 phan b 16 rong (€).
Cac két qua tinh todn Iy thuyét cling nhu chuong trinh tinh todn s6 da dugc tac
gia so sanh vdi mot s6 két qua cla cac tac gia khac da dugc cong bé dé xac
minh d9 tin cdy va chinh xac. Bén canh do, cac tinh todn so dugc thuc hién
nham danh gia dnh hudng cla nén dan hoi téi dao dong tu do clia tam FGP
cling dugc nghién ctu va trinh bay day da.

Tir khéa: Phuong phdp phdn tir hitu han FEM, tdm xdp co tinh bién thién,
tdm chit nhdt.
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1. INTRODUCTION

The plate structures resting on the EF are common in
practice and attract many scientists around the world to
focus on research. Some typical works can be summarized
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as Li et al. [1] examined the nonlinear vibration of FGP
sandwich plates using Galerkin and the fourth-order
Runge-Kutta methods. Zenkour et al. [2] proposed a four-
unknown variable plate theory for the vibration analysis of
composite/sandwich plates. Duc and his colleagues
investigated the nonlinear dynamic problem of FGM plates
[3] and FGM shells lying on the EF [4]. Moreover, the
numerical results of the mechanical response of FGM
structures are shown in his book [5]. Mahmoudi and
coworkers [6] used a refined Quasi-3D theory to study the
bending of FG sandwich plates resting on Winkler-
Pasternak foundation. Omurtag and coworkers [7]
employed mixed finite element formulation based on
gateaux differential to investigate the free vibration of thin
plates. Zhou and coworkers [8] employed the Ritz method
to study the dynamic response of rectangular thick plates
while Ferreira et al. [9] used radial basis functions for
bending and vibration analysis of rectangular plates. In
addition, valuable numerical results about mechanical
analysis of structures lying on the elastic foundation can be
found in [10-12]. Motaghian and partners [13] computed
the free vibration of plates partially supported EF using the
analytical solution.

In this research, authors extend the eight-node
quadrilateral (Q8) element combined with Mindlin plate
theory to more accurately describe the stress-strain and
displacement field of the FGP plate. The accuracy and
reliability of the present approach are verified by
comparing numerical results with other previous
publications. Moreover, the effects of foundation
parameters and material properties on the free vibration of
FGP plates are examined in detail.

2. GOVENING EQUANTIONS
2.1. The FGP plate

In this research, we consider a rectangular FGP plate with
the length a, the width b and the thickness h partially
supported by EF as shown in Fig. 1. The EF consists of two
types is Type 1: The EF with the rectangular domain follows
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vertical as Fig. 2(a); and Type 2: The PSEF with the rectangular
domain follows horizontal as Fig. 2(b). Note that the area of EF
in these types is the same.

Even porosities (Case 1)

Uneven porosities (Case 2)

Fig. 1. Model of FGP plates partially supported by EF.
(a) The FGP plate, (b) Even porosity, (c) Uneven porosity

~— Shear layer stiffness
_____ Spring stiffness

The FGP materials with a variation of two constituents
and two different distributions of porosity through-
thickness are determined by [14]:

k
Case 1: P(z)=Pm+<Pc—Pm>(§+o,s] SRR
Case 2:
z K€ 2[7]
= - — - ——1] (2
P(z) =P +(P. Pm)(h+0,5j 2(Pc+Pm)[1 - (2)

Where P represents any effective material property such
as Young's modulus E, mass density p, and Poisson's ratio u;
k is the volume fraction index, & (§ < 1) represents the
porosity volume fraction. Subscripts m and c denote the
metallic and ceramic constituents, respectively.

The force acting of The Winkler-Pasternak foundation is
given by [14]:

+

3
> oy 3)

2 2
a. =k1w—k2[a w 0 w]
With w is the displacement of the plate along the z-axis;
ki, k, are spring stiffness and shear layer stiffness,
respectively.

b/2

[————————»|

a/2

(a) Type 1 (b) Type 2
Fig. 2. Different types of EF
2.2. The displacement field

According to the first-order shear deformation theory
(FSDT), the displacement field of the FGP plate is given by
[15]:

u(x,y,z)=u, (x,y)+ 20, (x.y);

(4)
V(X,Y,2) = Vo (X, y)+20,(X,y); W(x,y,2) =w,(x,y)
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with u,, v, W, are the displacement components at the
mid-plane (z = 0) along x, y, z-axis; 6,, 6, are the angle of
rotation of the mid-surface about the y and x-axis,
respectively.

2.3. The strain vector

The strain vector of the plate is defined according to the
displacement field as follows:

8xx u,x uO,x X, X
& V’y Vo,y vy
E=1&, r=1U,+V, r=1Uy, +Vo, 1 +26, +6, ¢+ (5
E:xz W,x + u,z VO.x + ex O
€, W, +V, W,, +86, 0
T T
e={g g} = {ef +z&! eg} 6)
with
Exx uO,x
— . — EXZ g0 .
& = EYY &) = € & = Vo,y N
yz
u, +V
Xy 0,y 0,x
0 7)
X,X
€ = 4] g = Wos 16,
1 v PR T w46,
ex,y + ey,x

2.4. The stress-strain relation
The tress-strain relation is defined by

o=D.c (8a)
C C 0
D_|:Db 03X2:|.D ~ 11 C12 0
- o D ’ b~ 22 4
- ’ sym Cos (8b)

E E
;G = (13U2);

s &
0 C,
C,=C, = (1—U2)
9
£ 9)

Cos =Cos =Cyy =2(1+U)

The relationship between the internal forces and the

deformation components are written in the form:
(N, N, N, }=Ae +Bej;

XX vy
(M, M, M, |=Be +Xe:{Q, Q,|=A€
where A;B; X; A°® are defined as follows
h/2
2 s 5
(A;B;X)= [ D,.(t7)dz; A ==

-h/2

h/2
I D..dz
—-h/2

2.5. The plate element

The eight-node plate element type is used. Each node
has five degrees of freedom (DOF). The 4.0-dimentional
nodal displacement vector is:
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d =[d d dl d] dI di d dI (12)

The displacements at the node i (i = 1 + 8) of element is
expressed byl

di:{uOi Vo Woi Py (pyi} (13)

The displacement field in each plate element is
interpolated through the node displacement as follows
u,=N,d_;v,=N,d;w, =N, d,;
0 u e 0 \ e 0 (14)
®Q, =N¢X.de; P, =N¢y.de

here N,,N,,N,,N_,N_ are the shape functions [16].

ox >
N, =[N NP ND N
N, =[N® NY . NP NO:
N, =[N® N2 . N® NP
N, =[N" N N NG ;
Ny .

N,, =[N N .. N
The matrices N” (j=1+5)are given by

N”=[p, 0 0 0 O;N”=[0 g, 0 0 0]
N[0 0 v 0 olN“I-[o 0 o 4 o} (16
N®=[0 0 0 0 g].

where {, is the Lagrange interpolation function.
The element stiffness matrix is determined by
K, =K’ +K: +K' (17)

with K, K® are the bending, shear element stiffness
matrices, respectively.

Those matrices are determined as follows:

A B| B
b _ T T 1
K. —S_[([& BZJ[B X}[Bdexdy (18)
S 5 TAas
Ke ZEI(B3A B3)dxdy (19)
SE
K. = [ (NN, +k, (NI, N, , +NL N, Ddxdy — (20)
SE
where
Nu)x N(PX,X NW’X +N¢x
B = vy ;B, = N, B, = N,, +N,, 2
Nu’x +NV,y wa’y +NW,x ’
The element mass matrix is given by
, 0 01, 0
[ 0 0 |
M, = f N’ I, 0 O0|Ndxdy 22)
> l, 0

3
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with

N=[N] N N, N N | (23)
a0 =" o(lz,22)d (24)
1292 3)_J_h/2p ’Z’Z ) z

Applying Hamilton’s principle leads to the motion
equation of plates as follows:

Md+Kd=0
Where M,K, d are the global mass matrix, the global

(25)

stiffness matrix, the global force vector, and the global
displacement vector, respectively.

3. VERIFICATION PROBLEM

Firstly, we consider an SSSS FGP (Case 2) plate with
material properties are listed in Table 1. The stiffness factor
and non-dimensional frequencies of the plates are
introduced by

K - ka* _ ka’
1 Hb o Hb
E.h’ 2
with H, =—>—— and o’ - wa 1Py
12(1-0?) h \E,

The first non-dimensional frequencies of present work
in comparsion with [17] where a novel quasi-3D hyperbolic
theory is used are shown in Table 2.

Table 1. Material properties of the individual materials

Materials E(GPa) v p (kg/m’)
Al,0, (ceramic) 380 0.3 3800
Al (metal) 70 0.3 2707
Table 2. The first non-dimensional frequencies of FGP plate
(9 £=0 £=0.
K,) Present | [17] D (%) | Present | [17]1 | A (%)
0.05 | 15390 | 15439 | 0.31 16.330 | 16.320 | 0.06
(100, 0.10 | 15230 | 15.245 [ 0.09 | 16.165 | 16.148 | 0.11
100) [ 015 | 14968 | 14966 | 001 | 15919 | 15.895 | 0.15
0.20 | 14.666 | 14.640 | 0.18 | 15.623 [ 15595 | 0.18

Secondly, the plates are partially supported by a Winkler
foundation [18] as displayed in Fig. 3. Parameters of the
isotropic plate as L, = 2m, L,=1m, h =0.01m, E = 200GPa,
v = 0.3, and p = 7850kg/m>. The first non-dimensional
natural frequencies of the present work compared to those
of Motaghian et al. The publication where the analytical
solution are listed in Table 3. It can be observed that the
numerical results in our work are compared to those of Ref.
It can be seen that the erros of the two numerical results
are less than 2%. The comparison results given above allow
to belive in the accuracy and reliability of the method and
calculation programme proposed.

Vol. 58 - No. 6A (Nov 2022) e Journal of SCIENCE & TECHNOLOGY | 53



SCIENCE - TECHNOLOGY

P-ISSN 1859-3585 | E-ISSN 2615-9619

y
A
L.X
A
p{ I s B
L/4]-—-—-
| |
| | \i - X
L./3 5L./6
Fig. 3. The plate is partially supported by EF
Table 3. Non-dimensional natural frequencies of plates
Boundary 5555 cccc
condition
K, | o | Present | [18] | A(%) | Present [18] | A(%)
W, 5.0256 | 5.003 | 0.45 | 10.2650 | 10.295 | 0.29
W, 8.0390 | 8.001 0.47 | 13.2832 | 13.348 | 0.49
0] o 13.0950 | 13.00 | 1.73 | 18.6812 | 18.782 | 0.54
w, | 171712 | 17.00 | 1.00 | 26,0202 | 26.226 | 0.78
W, | 20327 | 2000 | 1.64 | 301920 | 29.853 | 1.14
4. NUMERICAL RESULTS

In this section, the free vibration of FGP plates is
considered. The geometry parameters of the FGP plate
are b/a = 2 (the value of a is fixed) with material properties
as shown in Table 1 and porosity volume fraction
& = 0.5, volume fraction index k = 1, values of parameters
K, = K, = 100. The non-dimensional parameters are taken as
in section 3.

Fig. 4 presents the first mode shape of the SSSS FGP
plates with the different cases of porosity distribution and
types of EF while Fig. 5 shows the first four mode shape of
the CCCC FGP (case 1) plates with types 1 of the EF. It can
be found that with the same BC and the porosity
distribution, the first natural frequency of the FGP plate is
placed on the EF type 1 is larger than the first natural
frequency of the FGP plate placed on the EF type 2. We can
also be concluded that the mode shape of the FGP plate is
not symmetric because the stiffness at each position of the
plate has different values. The maximum displacement of
the mode shapes is traveled to the location of the plate not

supported by foundations.

(b) Case 1, Type 2, w,'= 6.1065

(a) Case 1, Type 1, w, = 9.4610
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(0) Case 2, Type 1,0, =9.7116 (d) Case 2, Type 2, w, = 8.2783
Fig. 4. The first mode shapes of SSSS FGP plates with different cases of

porosity distribution and types of EFs
(b) Mode 2, w,’= 15.6162

(a) Mode 1, 0,"= 12.6087
¢ b &
4 N
(d) Mode 4, w, = 25.3762

(c) Mode 3, w,'= 20.2434
Fig. 5. The first four mode shapes of the CCCC FGP (Case 1) plate
5. CONCLUSIONS

In this article, the free vibration of the FGP plate partially
supported by EF is studied by using the FEM based on
Mindlin plate theory. The obtained numerical results of the
present approach are compared to other available
solutions. From the proposed formulation and the
numerical results, we can withdraw some following points:

e The FGP plates resting on different types of EF lead to
various natural frequencies. This shows the partially
supported foundation significantly affects the free
vibration of plates.

e The foundation stiffness parameters and material
properties greatly influence the free vibration of the plate.
Adjusting these parameters can control the free vibration
of FGP plates.

e The present approach can be developed to
investigate the free vibration of the FGP plate partially
supported by EF with different shapes which not
symmetrical as L-shape, Annular-shape, etc.

e Numerical results in the present work are useful for
calculation, designing of FGP plate partially supported by
EF in engineering and technologies.
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