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Abstract

In this paper, we establish second-order sufficient optimality conditions for optimal control problem of 2D g-Navier- 
Stokes equations.
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Tóm tắt
Trong bài báo này, chúng tôi thiết lập điều kiện đủ tối ưu bậc hai cho bài toán điều khiển tối ưu đối với hệ phương 
trình g-Navier-Stokes hai chiều.

Từ khóa: Hệ phương trình g-Navier-Stokes equations; nghiệm yếu; điều kiện đủ tối ưu.

1. INTRODUCTION

Let Q be a bounded domain in R2 with sufficiently 
smooth boundary r . In this paper we consider the 
following two-dimensional g-Navier-Stokes equations:

+ (_y.A)y + V/2 = f in (o,r)xfì,

<V-(gy) = 0 in (0,r)xQ, (1)

y(o,x) =70, xeQ.

Where:
y = y (x, t) = (y,,y2) is the unknown velocity vectơ;
p = p (x, t) is the unknown pressure;

V > Ỡ is the kinematic viscosity coefficient;

y0 is the initial velocity.
The g-Navier-Stokes equations is a variation of the 
standard Navier-Stokes equations. More precisely, 
when g = const we get the usual Navier-Stokes 
equations. The 2D g-Navier-Stokes equations arise in 
a natural way when we study the standard 3D problem 
in thin domains. We refer the reader to [7] for a 

derivation of the 2D g-Navier-Stokes equations from 
the 3D Navier-Stokes equations and a relationship 
between them. As mentioned in [7], good properties 
of the 2D g-Navier-Stokes equations can lead to an 
initiate the study of the Navier-Stokes equations on the 
thin three dimensional domain Dg = Q X (0, g). In the 
last few years, the existence and asymptotic behavior 
of weak solutions to 2D g-Navier-Stokes equations 
have been studied extensively in (see e.g. [1, 5, 7]). 
In a recent work [2], we proved the existence and 
numerical approximation of strong solutions to the two- 
dimensional g-Navier-Stokes. The long-time behavior 
of the strong solutions was studied very recently in 
[3] in the autonomous case in terms of existence of a 
global attractor, and existence and stability of a unique 
stationary solution.

In this paper, we consider an optimal control with a 
quadratic objective functional for 2D g-Navier-Stokes 
equations. To do this, we assume that the function g 
satisfies the following assumption:

(G)geJK'°°(Q)

Such that:

ữ<mữ <g(x)< Mo for all x = (x1,Jt2)eii, and ]Vg|(< m0^l/2.

Where:
\ > 0 is the first eigenvalue of the g-Stokes operator 
in Q (i.e. the operator A defined in Section 2 below).
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The rest of the paper is organized as follows. In Sec­
tion 2, for convenience of the reader, we recall some 
auxiliary results on the 2D g-Navier-Stokes equations, 
which will be used later. Next section, we show the op­
timal control problem, and the main results is shown in 
the last section.

2. PRELIMINARY RESULTS

To consider equation (1), we denote by Q = 0 X (0, T) 
the space-time cylinder.
Here, T < 00 is a given final time. Futher, we set 
E:=rx(o,r).
Let Z2(Q,g) = (z2(Q))2 and 4(Q,g) = (4(n))2 be 
endowed, respectively, with the inner products.
(«>ư)g = Ịu.ugdx, u,u G IỈ (Q,g), 

n

And

= J^VMyVưygíử, u =

t) = (u.y2)eH,ỉ(Ọ..g).

And norms |m|2 = (u,u) ,||w||2 =((w,w)) . Thanks to 

assumption (G), the norms I’l and ll’ll are equivalent to 
the usual ones in (ả2(Q))2 and in (wỏ(Q))2.

Let
V = G (co“ (Q))2 : v.(gw) = o|.

Denote by H„ the closure of V in (z2(Q)j and 
by Vg the closure of V in (#0(Q)) . It follows that 

VgdHg=H'g<^V'g, where the injections are dense 
and continuous. We will use ||-||, for the norm in V' and 
(...) for duality pairing between V and V’. To deal with 
the time derivative in the state equation, we introduce 
the common spaces of functions y whose time deriva­
tives yt exists as abstact functions.

(o, T; vg) := {j G L2 (o, T- Vg): y, G La (o, T- V'g)},

fP(0,7’):=fF“(0,7’;Kg).

Where 1< a < 2. Endowed with the norm

IML- HL“(o,r;Kg)— ll-T’llz.2 (r.,)’

IK:=IK-
These spaces are Banach spaces.

Set A:Vg ->V'g by (^m,l>) = ((m,u)) , 

Denote D(A) = [u G Kg :AueHg]

Then r>(^) = /72(Q,g)HKg

And Au = -PgAu,Yu G D(A)

Where Pg is the ortho-projector from Zr (Q,g) onto H

Set B: K X Kg -> Vg by = b(u,v,w) where

b(u,u, w) = £ Uj wkgdx

Whenever the integrals make sence. It is easy to check 
that if u,v,weVg, then

b(u,v,w) = -b(u,w,v) (2)

Hence 

b(u,D,v) = 0,Vu,u G Vg.
Let uelỉ (r,T,Vg ), then the function Cu defined by 

(Cu(r).v) = —.V u,t> =b —,w,u .VugK,belongs
8 ll s J Jg I s J

to L2ịr,T,HgỴ and hence also belongs to L2(r,T,Vgy

--(V.gV)w = -AM- ^.v « 
g I g J

We have

Definition 2.1 (Weak solution). Let f GIỈ (o.Ti^'jand 
To e Hg be given, a weak solution of problem (1.1) is a 
function yei2(o,r;fj with yt e IỈ such that

y, + vAy + vCy + B(y) = f in l}(ữ,T\VgỴ 

t(O) = To in Hg.
(3)

Theorem 2.1 ([1]). (Existence and uniqueness of 
solutions)

Let Cl be a bounded and locally Lipschitz domain in R. 
Then for every f elỉ (b,T-,V'g) and y0 e Hg, the equa­

tion (3) has a unique solution y G w (0, T).

2.1. Linearized equations. We will need in the follow­
ing some results about linearied equations. Given a 
state yeH'iO.fj. we consider the system

y, + vAy + vCy +B'(y\y —f in E (e,T,V'\, 
, (4)

t(O) = To in Hg.

Here, ổ'(t)t denotes the Frechet derivative of B 

with respect to the state y . It is itself a functional of 
lĩ (ỹ,T-y'gỴ which for ue IỈ (b,T-,Vg^ is given by

(*'PM

T _ (5)
= J(ố(t(í),tO),v(í)) + ố(t('),t(í),v(í)))*-

0

Lemma2.1.(f4j) Theoperator B: fF(0,T) -> IỈ (o,T;Kg) 

is twice Frechet differentiable. All derivatives of third or 
higher order vanish. The first derivative is given by (2). 
It can be estimated as.

kW4w -CHIWII< (6)
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As for quadratic functions, the second derivative is in­
dependent of y:

(2r(y)[y„y2],i>)

=j (*(yi (i),y2 (í),y(0)+ủ(y2 (O’Ti (0^(0)^ 
0

The adjoint of called ổ’(ỹ) , is a linear and 

continuous operator from Z,2(0,T;Kg) to fF’(0,r). It 
can be written as
(^'(ỹ) Ấ,wj = J'(è(ỹ(í),w(í),Ấ(r))+ồ(w(í),ỹ(í),Ấ(/)))rfí

Theorem 2.2 ([4]). Let f e L2 (0,T;Kg'), yoeHg and 
yefV(0,T) be given. Then the equation (4) has a 
unique weak solution yeW(b,T).

2.2. The control-to-state mapping

We will study the mapping: Right-hand side h-> solution, 
the so-called control to state mapping. Let ueL2 (2) 
denote the control, then we will use II as/in (1).

Definition 2.2. (Solution mapping)

Consider the system (1). The mapping u y , where y 
is the weak solution of (1) with the control right-hand side w 
and fixed initial value y0, is denoted by s, i.e. y - S(u).

Lemma 2.2 ([4]). The control-to-state mapping is 
Frechet differentiable as mapping from L2(0,T;Vg\ 

to w (0, T). The derivative u e IỈ (0,T;Kg) in direction 
helĩ (o,T;Kg') /s given by S'fyh = y, where y is the 

weak solution of

y.+vAy + vCy + B(y]y = h in L2(0,T;V'}, 
\ v s/ (8)

y(O) = yo in//,.

With y = s(ũỴ

In order to establish first-order optimality conditions, 
we wjll need the adjoint operator of S' (wj denote by 
S'(m) . By Lemma 2.2, we can regard as linear 

operator from IỈ (o, ĩ; J/') to Wơ, where wo is defined as 

a closed linear subspace of w (0, T) by

P7o:={yefF(O,7’):y(O) = O}. (9)

Hence, the adjoint will be a mapping from if/ to 
£2(<wg).

Lemma 2.3 ([4]). Let be u eL2 (Q)2. Then the operator 
S'(w) is linear and continuous from to IĨ

. Its action is defined as follows. Take z in Wg, then

Ả = z holds if and only if

(w. + vAw + vCw+ B'{ y}w,A)
\ v (10)

For all weff0.

Lemma 2.4 ([4]). Let be ũeL2 (Q)2 given Suppose the 

right-hand side z of (10) is in the form z = z, + z2 with 

functionals z} e 74 3 (o,7;K/)nff/ and z2e^0* defined 

by z2(>tj = |zj,w(f )j,z,. e//. Then ấ = S'(m) z is the 

weak solution of

-Ẳ,+vAẢ + vCẮ + B'^ ằ = Zị in Z,4/3(0,T;Kg), 

^r) = zT.

Futhermore, it holds Ả e JP4/3 (0,T).

3. THE OPTIMAL CONTROL PROBLEM
We are considering optimal control of the instationary 
g-Navier-Stokes equations. The minimization of the 
following quadratic objective functional serves as mod­
el problem:

•^(y.«) = yJn|T(x,7’)-yr (x)|2<fe

+ ^ị LHX’Z)-Te(x’z)|2 dxdt (12)

+ ^Uu(xd)fdxdt-

They are weighted by the coefficients aT, aQ, aR andy. 
The free variables-state y and control u - have to fulfill 
the instationary g-Navier-Stokes equations

yt - vAy + (y•A)y + V/2 = u in Q,

v-(gy) =0in2,

y = 0 in E,

y(o,x) =yoin Q.

The control has to satisfy inequality constraints:

a.e. on Q, i = l,2.

3.1. Setting of the problem
Let us specify the problem setting. Unless other condi­
tions are imposed, we assume that the ingredients of 
the optimal problem satisfy the following:

I) The domain Q is supposed to be an open bounded 
subset of R2 with Lipschitz boundary r . We denote 
the time-space cylinder by Q = Q X (0, T) its boundary 
by Z = rx(0,T).

ii) The initial value y0 is a given function in H:. The de­
sirred states have to satisfy yr e Hg and yQ e Ứ (2)2.

Ill) The parameter V is positive real number. The coef­
ficients dj., aQ are non-negative real number, where at 
least one of them is positive to get a non-trivial objective 
functional. The regularization parameter y, which mea­
sures the cost of the control, is also a positive number.

iv) The control constraints ua,ub e IỈ (Q)2 have to satis­
fy uai(x,t)<ubi(x,t) a.e. on Q for z = l,2.
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We define the set of admissible controls Uad by

Le£2(2)2 :uaJx,t)<Ui (x,t)<ubi (x,t)
'-'ad _1 . f •

a.e. on Q, i-1,2
Uad is non-empty, convex and closed in L2(Q)2.

So we end up with the optimization problem in function 
space minJ(^,M).

Subject to the state equation

y, + vAy + vCy +B(y) = u in IỈ
(14)1 y(o)=yo-

And the control constraint

(15)

3.2. Existence of solutions
We call a couple (y, u) of state and control admissible if 
it satisfies the constraints (14) - (15) of the optimal con­
trol problem. We will denote in the sequel pairs of con­
trol and state by It, e.g. u = (y,u),v = íỹ.ỹì and so on.

At first, we recall the optimal control problem has a 
solution.

Theorem 3.1 ([13]). The optimal control problem ad­
mits a-globally optimal-solution u 6 Uad with associated 
state yeW(O,T).

3.3. Lagrange functional

We will define the Lagrange functional

L:W(O,T') X £2(Q)2 X £2(o,T;l^) ~ R for the opti­
mal control problem as follows:
L(y,u,Ằ) = j(y,u)

~(y> + vAy + vCy+B^-U, ■

The Lagrange function L is, for given Ả e IỈ (0,7’;Ki,), 

twice Frechet-differentiable with respect to 
(^,w)sir(o,T)x£2(Q)2. The first-order derivatives of 

£ with respect to y and II in direction u'eTl'OJj and 
helỉ (2)2 respectively are 

£v(^,u,A)w

= «;.(y(7')-yr,w(7'));/ + aJy-yQ,w)Q 

-lợvt+vAw+vCw+B\y)w,Ả}L1(Y,}j}^Ỵ 

Ljy,u,X)h = r(u,h)0+(h,X)0.

The second-order derivative of L with respect to V = (y, u) 
in directions

(w1,/í|),(w2,/Í2)efF(0,T)x£2(ộ)2

Is

Lull(y,u,Ả)[{wí,hì),(w2,h2)']

= £w(y,M,A)[w1;w2] + £u„(y,u,A)(M2)
With

Lyy (t.«^)H,w2] = aT (w, (T), w2

+ aQ (w,, w2 )e -(5’(y)[w,, w2 ], ấ\2(v.} )

And

Luu (y.“^)[^iA] = r(AiA)e-
Theorem 3.2 ([4]). Let A e £2 (0,7;^,) be given. Then 

the Lagrangian L is twice Frechet-differentiable with 
respect to V - (y, u) from ffjo, T) X L2 (Q)2 to R. The 
second-order derivative at (y, u) fulfill, together with the 
Lagrange multiplier K, the estimate.

|£p,(y,M)[W1,w2]|<Q (l + M)H|||w,|| (16)

For all with some constant CL > 0 that does not de­
pend on wltw2 etr(o,ĩ).

Remark 3.1. The objective functional J is twice contin­
uously di erentiable from 1F(O,T)x£2((2)2 to R. The 
reduced objective 0(u):= j(s(u),u} continuously is 
also twice continuous di erentiable from £2 (2)2 to R.

Now, we recall first-order necessary optimality con­
dition of the optimal control problem, it have been 
showed in [13],

Definition 3.1. A control ueUad is said to be local­

ly optimal in Lp (QỶ, if there exists a constant p > 0 

such that J(y,u}< J(y,u)holds for all ueUad with 

ll“_“llp Where y and y denote the states asso­

ciated with Ũ and u.

Now, we will state the first-order optimality condition: 
Theorem 3.3 ([13]). Let Ji be locally optimal in £2 (ộ)2 
with associated state ỹ = s(w). Then there exists a 
unique Lagrange A 6 IF4 3 (o, T; Vg), which is the weak 
solution of the adjoint equation.

-Ằ.I +VAẢ + VCẢ + B'(yj Ằ=ữjy-yj

Ã(T) = aT(ỹ(T)-yTỴ

Moreover, the variational inequality
{ỵu + Ằ,u—uj >0 \/ueUad 

is satisfied.
Theorem 3.4. Under the conditions of Theorem 3.3, it 
is necessary for local optimality of u that there exists 
A e fF4/3 (0,r), such that

L , Íj>,w,a)w = 0 VwefF0,

VueUad

is fulfilled.

4. SECOND-ORDER SUFFICIENT OPTIMALITY CON­
DITIONS

The sufficient condition that we will present here re­
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quires coercivity of the second derivative of the La­
grangian only for a subspace of the space of all pos­
sible directions. Using strongly active constraints, we 
are able to shrink the subspace in which the coercivity 
must hold.

Now, let us specify the notations of strongly active sets.

Definition 4.1. (Strong active sests). Let e > 0 be giv­
en. Define sets QeJc Q = Q X [o, r] fori = {1,2} by

Qci = ((*’0e Q • |M (m)+^í (x,f) >

For ueư (2)2 and 1 < p < 00, we define the u -norm 

with respect to the sets of strongly active control con­
straints.

/ 2 VO”

\ j=l /

Remark 4.1. Note that the variational inequality (13) 

uniquely determines Ui on Qe:. If yw, (x,r) + Zi(x,i)>£- 
then Ui (x,r) = ua i (x,r) must hold. On the other hand, 
it follows Ui(x,f) = ubi(x,f) if ỵũ!(x^ + Ã,i(xĩf)<-£ is 
satisfied.

In what follows we fix u := (ỹ,ũ) to be an admissible ref­

erence pair. We suppose that Ũ satisfies together with 
the adjoint state the first-order necessary optimality con­
ditions, e.g. equations (1 )-(13). Futhermore, we assume 
that the reference pair ũ := (ỹ, w) satisfies for some g > 

3/4 the following coercivity assumption on in
the sequel second-order su cient condition:

There exist e > 0 and Ỗ > 0 such that 

4„(õ,Ã)[z,À]2 >T||/z||2, 

hold for all pairs fli'fli’ (fỵTỵ*L2 (2)2

(.S’.SC) WZi^ = 11 ~u’u e ^ad’h‘ = 0 on Qf:‘for z = 1’2’ 
and z eW (o,r) being the weak 

solution of the linearied equation 
zt + vAz + vCz + B'[y^z = h 

z(o) = o.

The following theorem states the sufficiency of (SSC):

Theorem 4.1. Let ũ = be admissible for the opti­
mal control problem and suppose that V fulfills the first 
order necessary optimality conditions with associated 
adjoint state. Assume further that (SSC) is satisfies at 
u with g> 3/4. Then u is locally optimal in Ls. More­
over, there exists a > 0 and p > 0 such that.

j(y) > j(cộ + a||u -w||

holds for admissible pairs V = (y, u) with ||h-w|| p, 

where the exponent s is given by 1 = 1/s + 1/q.

Proof. Throughout the proof, c is used as a generic 
constant. Suppose that õ = (y,ũ) fulfills the assump­

tions of the theorem. Let (y, u) be another admissible 
pair. We have

= and J(o) = £(y,zj, 

since V and u are admissible. Taylor-expression of the 
Lagrange-function yields.

+ (ữ,Ẩ)(y-ỹ)

Notice that there is no remainder term due to the qua­
dratic nature of all nonlin-earities. Moreover, the nec­
essary condition is satisfied at Ũ with adjoint state z. 
Therefore, the second term vanishes. The third term is 
nonnegative due to the variational inequality. However, 
we get even more by [4, Lemma 4.4],

Lu (5, - ũ) = Ịs(fũ + Ằ^(u-Ũ^dxdt > s||í/-m|| ).

So we arrive at
J(v) = j(0) + £v(0J)(y-y)

We set ỔU = u -u. Let us define 8 to be weak solution 
of the linearied system

8yt + vA6y + vCõy + 5'(ỹ)ổy = 8u, 8y = 0. 

When we use 8 instead of y-~y , we make the small 
error
rx := iy-y\-Sy = s(f)-s{u-u].

We know that the control-to-state mapping is Frechet 
differentiable, by Remark 3.1, the remainder term sat­
isfies

Substituting y-y = 8y + rt, we obtain

,(5J)[y-y]3 = 6,Jo,I)py]2 +2£>v (Õ, !)[<>>,/•,] 

+£,JÕ,Ã)[rl]2 = Ln.(<u)[jy]2 +r2.

The remainder term can be estimated by

k1 c(IIMl + Ik. IL) llr> Ilắ c (IM,+ Ik II )lk II
and it follow that r2 satisfies

Let us abbreviate 8V= (8V,8J. So far, we achieved the fol­
lowing estimate for the difference of the objective values. 
J (y) - J (5) > I Lm (õ, Ã) [To]2 + s |u - (a ( + r2.

In the next step, we want to apply the coercivity as­
sumption (SSC). To do this, we split 8U in two compo­
nents as follows:
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3u = hu+r„

Where hu and ru are defined by

A [° °nQcJ 

uj [ồuionQ\Qci.

ỊôUị on Qc i
= [o onQ\Qei.

for all 7 = 1,2. Observe that hu,ru are orthogonal, i.e. 
(h. r..)„ = 0. Moreover, it follows from the definition that the identify

Analogously, we split ỗv=/ỉv+r, where /ỉ and r are solu­
tions of the respective linearied system with right-hand 
sides hu and ru. Further, we set hv:= fh.hu) and rv:= (r,ru). 
\Ne continue the investigation of the Lagrangian.

£ự(õ,Ã)[ốo]2 = £yu(0J)[£„]2

+ 2LUO (ũ,Ã)[hu,r„] + Lvv (ũ,Ã)[r„]2.

Now, we can use (SSC) to obtain 

£„1)(5J)[/i„]2>j||£„||;. (18)

The derivative £uu can be splitted according to Theo­
rem 3.2 into two addends, and L>y, and no mixed 
derivatives appear. At first, we find 

2LUu{ỹ^){hu^u]+Luu (m)M2
(19) = 2r(/»„,r„)e+r||r„||2 >0.

Secondly, we investigate

2£13.(Ũ,Ã)[Av,/•,.] + £„. (õ,Ã)[rr]2.

The following estimate is a conclusion of the inequality 
(16) and the Lipschitz continuity of the solution map­
ping of the linearied system

|2£„(õ,Ã)[/ỉ,.,rr] + £n.(f;,Ã)[rv]2| 

ằ-clkl(hllr+hl)

7. , „ „ (2°)

IkE-
Using the relation kll; > ||H|;-||r„||;, 

we get by (17)-(20).

Moreover, we proved the following estimate

By the interpolation estimate ||w||2 <11^ ||u|| 5 we get

UHR +s ll“_“C'(a) "CII“-“E (a) +r-

We can choose p small enough, ||t( -i(||< p. such that it 
holds J(u)-> A ||„ _„|£.

Thus, we proved quadratic growth of the objective 
functions in a Ư- neighborhood of the reference con­
trol. It implies the local optimality of the pair (_V,«)-The 
proof is complete.
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