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ABSTRACT: 
The beam structure with a large cross-sectional height compared 
to the beam span, h/l1/5 (high beam) has been studied and widely 
applied in the fields of industrial, civil construction, traffic and 
irrigation. ..especially for high-rise buildings using vertical 
combined structural solutions (the lower floors are for showrooms, 
shops... need large space, while the upper floors are for hotels and 
houses ... only need small and medium space), in which people often 
use the structure of transfer floor, transfer truss or transfer beam 
with large cross-sectional height to transmit the load from the 
structure above to the foundation, because their ability to span 
large spans, they increase space, reduce the number of columns 
and create architecture for the building, meeting the practical 
needs of people. The Euler - Bernoulli beam theory is commonly 
used today, ignoring the effect of lateral shear strain caused by 

shear force, this is only true for beams with a small cross-sectional 
height compared to the beam length (h/L<1/ 5), but for high beams, 
the Euler-Bernoulli beam theory is no longer true. Therefore, in this 
paper, the author uses the forced displacement method combined 
with the finite element method to study the free vibration of the bar 
with different boundary conditions with considering the influence of 
the shear strain, the theory used here is the full beam theory [5]. 
The research results show that the influence of the lateral shear 
strain on the natural frequency of the bar is very large, for 
example, for the bar with one end fixed and the other pinned , the 
effect of the lateral shear strain is reduced by 34,075%, 38.707% 
compared to when the effect of lateral shear strain is not taken into 
account.  
Keywords: finite element; oscillate; vibration; oscillation...Phần tử 
hữu hạn, dao động... 

1. INTRODUCTION 
The problem of eigenvalues and eigenvectors has been

studied by many domestic and foreign scientists, but the current 
commonly used method is to bring the coefficient matrix of the 
equation of stability and free vibration of the bar to the diagonal 
form or band matrix form, strip along the main diagonal by 
different algorithms, such as Jacobi algorithm [8], LR [8], [10], 
QR[10], subspace [10]. ...which is very complicated, to get the 
product of that term gives us the characteristic polynomial 
equation to determine the eigenvalues. Although the methods [8], 
[10] have to transform the complex matrix, sometimes the solution
is not reliable enough because the convergence of the problem
depends on the properties of the matrix, symmetry or not
symmetry, positive definite or not positive... traditional methods,
such as Rayleigh's method [2], only give us the fundamental

frequency of oscillation. Unlike foreign authors, some domestic 
authors have used forced displacement [3], [4], [5], [6] to find 
solutions for some other eigenvalue problems. for example, in [3], 
[4], [5] the authors use forced displacement method for the 
problem of vibration and stability of the bar structure, in [6] the 
author uses the method of Forced displacement method for the 
vibration problem of cable structures, according to the semi-
analytic solution. 

The forced displacement method has a simple and easy-to-
understand view, by clicking the displacement at any point on the 
bar, it allows us to bring the eigenvalues of the freely oscillating 
bar to the differential equation on the right side, Solving this 
equation we immediately get the bar vibration frequencies 
without going through complex matrix transformations. Therefore, 
in this paper, the author also uses the above-mentioned forced 
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displacement method, combined with the finite element method 
to build and solve the problem of free oscillation of the bar with 
considering the influence of the lateral shear strain according to 
the numerical solution. 

 
2. THE PROBLEM OF FREE VIBRATION OF THE BAR WITH 

CONSIDERING THE LATERAL SHEAR STRAIN 
Consider a straight bar, of constant cross-section, with mass m 

uniformly distributed over the bar. When there is a lateral 
displacement, then in addition to the internal forces M and Q, the 
inertia force fm must also be considered. The force of inertia fm is 
the product of the mass and the acceleration of motion and whose 
direction of action is the direction of motion (the direction of 
deflection) of the bar. Thus, the inertial force has the same effect as 
the lateral force, in this case is the distributed lateral force, applied 
at the bar axis. If the mass m is distributed over the height of the 
bar section, then due to the rotation of the bar cross section, there 
is also a rotational inertia force of the bar cross section. For 
simplicity in studying, we do not consider this rotational inertia 
force. 

 
Figure 1. The bar with one end fixed and the othe free 
With D'Alambert's principle, consider the force of inertia fm as 

the external resistance force acting on the bar, and since the force 
of inertia is a function of time, the deflection and internal force 
functions in the bar are both functions of coordinates and time: 
W=W(x,t) is a function of deflection, M=M(x,t) is a function of 
bending moment, V=V(x,t) is a function of shear force. 

The inertia force of the bar is calculated as follows: 
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Considering the force of inertia fm as a distributed external 
resistance force acting on the bar, immediately write two balanced 
differential equations 
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When considering the shear strain in the bar, the shear strain , 
the angle of rotation due to the bending moment , the bending 
strain  and the internal moment force M are determined 
according to the following expressions: 
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Putting expressions (1) and (3) in (2) get 
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The solution of system (4) can be written in the form 
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Then system (4) has the form 
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Since the component in brackets does not depend on t, system 
(6) is simplified as follows 
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or is    
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The two functions y=y(x) and Q=Q(x) are both functions of the 
x coordinate. System (7) does not depend on the variable t, is a 
system of two linear differential equations with constant 
coefficients. When the shear strain is not considered, for G or 
for h0, the first two equations of the system (7) and the system 
(7a) become the equations of vibration of the bar according to the 
Euler-Bernoulli beam theory, solving this equation to find 
deflection y and then use the second equation to calculate Q. 

The general method for solving system (7) is to solve their two 
characteristic equations and construct the solutions y and Q on the 
basis of the solutions (eigenvalues) of the characteristic equations. 
However, we will use forced displacement method to solve. 
 

3. THE FORCED DISPLACEMENT METHOD  
  When building the problem according to the method of 
Gaussian extremum principle, it is possible to use variable 
quantities (virtual displacement and virtual strain) that are 
independent of time. 
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The letter x at the foot of quantities indicates that the quantity 
depends only on x. 

The problem of free oscillation of the bar is referred to the problem 
of finding the minimum of the amount of coercion at any time t: 
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The quantity in square brackets of the functional (9) is a 
variable quantity. 

From the minimum condition 
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and using the differential calculus will get back two equations 
(6) and since the problem is linear in terms of t, it has system (7). 

Thus, the problem of free oscillation of the bar using transform 
(5) leads to the solution of system (7) which does not contain the 
variable t. The y0 (non-trivial) solution of system (7) depends on 
the parameters m, EJ,  and bar length. Usually, the parameters m, 
EJ and bar length are known so frequency is a function of these 
quantities. 

Using quantities that do not contain a time variable t, problem 
(9) has the form 
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To solve problem (11) we use forced displacement method by 
giving a certain point of the bar, for example point x1 , forced 
displacement y0. 

0y)x(yg 011                                  (13) 

The minimum problem (11) with constraint (13) is a static 
problem of calculating the bar subjected to forced displacement at 
the point x1, whose hidden is the frequency , so it can be called 
the free oscillation problem of the bar. Writing the extended 
Lagrange function F of (11) and (13), we have the extreme 
condition 
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 in (14) is the Lagrange factor and is the new unknown of the 
problem. From (14) get two balanced equations (two Euler 
equations): 
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along with equation (13). The system of equations (15) has the 
right side  . 

   Mechanically,  has the dimension is force and it is the 
holding force to displace at the point x=x1 of the bar by the forced 
displacement y0 (equation (13)). The holding force we put in so it 
has to equal zero. Mathematically, the equation of oscillation is an 
equation that has no right side (system (7)) so it must also be zero. 
So we have 

 0                                              (16) 
 The solution of equation (16) is also a solution of the left side 

(15) or of the system (7). Thus, equation (16) is a polynomial 
equation determining eigenvalues, when the functions y(x) and 
Q(x) satisfy the boundary conditions, it is a polynomial equation 
determining the eigenfrequency of the free vibration of the bar. In 
this case  is the function of , =(). 

The problem of free oscillation of the bar is reduced to 
problem (11) with constraint (13) and will be solved directly on the 
extended Lagrange functional to find the function (), solving 

equation (16) will get the frequencies eigenvalues, similar to the 
problem of determining the critical force of the bar [4]. Note,  is 
the Lagrange factor of the constraint (13). 

 We are considering the case of uniformly distributed mass on 
the bar. The problem has infinitely many degrees of freedom, so 
there are infinitely many eigen frequencies. They form the 
oscillation natural frequency range of the bar whose lower 
boundary is the fundamental frequency and the upper boundary is 
infinitely large,  . Bars with different boundary conditions will 
oscillate with different natural frequencies. The free oscillation 
natural frequencies of bars with different boundary conditions are 
calculated by the forced displacement method shown below. 

 
4. THE PROBLEM OF FREE VIBRATION OF THE BAR - 

NUMERICAL SOLUTION 
4.1. The finite element method 
The finite element method divides the work into small parts 

called elements, the calculation of the work is led to the calculation 
of the small elements and then connects those elements together, 
we get the solution of a complete work. The interpolation function 
is chosen so that the calculation result is stable: the result is 
unique, a small change of the boundary condition or the initial 
condition does not change the calculation result. 

The beam theory considering the influence of lateral shear 
deformation presented in [5] considers the deflection y shear force 
Q of the beam to be two functions to be determined, so it is 
necessary to define two interpolation functions for the above two 
hidden functions. 

Based on the interpolation function, it is possible to calculate 
the stress and displacement fields of each element and thus 
establish the element stiffness matrix. Based on the element 
stiffness matrix, the overall stiffness matrix of the building is built. 

Normally, for flexural beam elements, a third degree 
polynomial is used to describe the displacement. 
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We see that there are 4 parameters that need to be 
determined. However, for convenience, we replace 4 parameters 
a0, a1, a2, a3 with displacement, rotation angle of the two-nodes 
element as shown in Figure 2. 

Due to the use of the 3rd order function, the forces acting on 
the element must all be reduced to the node, including the inertial 
force in the dynamic problem. 

a. Bending element interpolation function 
For flexural elements such as bars, a cubic polynomial is often 

used to calculate its displacement, so there are four parameters to 
be determined. It is possible to select a two-node element, each 
node has two parameters: displacement W and rotation angle  at 
that node, figure 2. 
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Figure 2. Two-node displacement element 
For a general calculation, the element length is taken in two 

units, the origin is placed in the middle. Thus, if the parameters 
W1,W2, 1, 2 are known, the displacement of each point in the 
element is determined by the following cubic polynomial. 

23132211 ffWfWf)x(W                               (18) 

where 
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We use the first degree polynomial to approximate the shear force 
function of the element, the shear force element contains two nodes, 
figure 3, each node has an unknown parameter Qi is the element shear 
force at that position. 
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1

 1
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Figure 3. Two-nodes shear force element 
The element length is taken by two units, the origin is placed in 

the middle of the element. If the shear forces Q1, Q2, at two nodes 
are known, then the shear force V at any point of the element is 
calculated by the formula. 
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Thus, each element has two displacements of nodes W1, W2 
two rotation angles 1, 2 and two shear forces of nodes Q1, Q2, a 
total of six parameters (6 hidden) to be determined. 
Let's call {X} is the column vector containing the six hidden 
elements of the element in the following order. 
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then we can rewrite the expressions (10) and (11) in matrix 
form as follows. 
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Sau khi đã biết các hàm chuyển vị và hàm lực cắt thì dễ dàng tính 
được biến dạng uốn x , nội lực mômen xM , biến dạng trượt x , góc 

xoay   (do mômen gây ra) của phần tử như sau. After knowing the 
displacement and shear force functions, it is easy to calculate the 
bending strain x, internal moment force Mx, shear strain x, and 
rotation angle  (caused by moment) of the element as follows. 
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 In the above formulas =2/x is the factor that returns the two-
unit length of the element to its true length. 

b. Element stiffness matrix 
Knowing the deflection function, the shear force function of 

the element, it is easy to calculate the element stiffness matrix. 
According to the Gaussian extremum principle method, we write 
the coercive quantity for the static problem as follows. 
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x and x are expressions containing the unknowns X(i), so the 
stationary condition of (26) is rewritten as follows. 
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X(i) with (i=16) are the hidden displacements, rotation angles 
and shear forces (W1, W2, 1, 2, Q1, Q2) at the two ends of the 
element, respectively, according to (20) rewritten as follows: 
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The factor x/2  to bring the integral from (-1) to (1) to the 
integral in terms of element length. For each (i) we get a row of 6 
columns, in turn let i run from 1 to 6 and calculate (27) we get an 
element stiffness matrix [ae] of size (6x6), as follows: 
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The integrals in (19) can be calculated exactly or in terms of 

Gaussian approximate integrals (numerical integrals). After 
calculation, get matrix [ae](6x6) by (28). 

The matrix [ae] is called the element stiffness matrix, L is the length 
of an element. Because the deflection function of the element is a 
cubic polynomial, the forces acting and the inertia forces of the 
elements must all be distributed about its node. There are six 
unknowns we get six equations and have the following form. 

    eee BXA 
    

                                (29)  

where: {Be} is the element node force vector (for static 
problems), if at node (1) there is a force P, then the right side 
B(1)=P..., {Be} ={0} is vector “0” (for free vibration problem), if 
mass m is located at node (1) (displacement element) and 
inertia force fm=m2W1 then this component is included matrix 
[ae] at the following position: ae(1,1)=m2. Usually, we will 
include the inertial forces into the overall matrix of the bar. 
Knowing the element stiffness matrix, it is easy to construct the 
overall stiffness matrix of the bar. Assuming the bar has only 
one element, the matrix [ae] is the overall stiffness matrix of the 
bar. Assuming the displacement at node (1) is zero, then we 
drop row 1 column 1 of matrix [ae], assuming shear force Q2=0 
then we drop row 6 column 6 of [ae] because we don't have 
two this hidden. 

4.2. Calculation examples 
Example 1. The bar with one end fixed and the other 

pinned: Give the bar with one end fixed and the other pinned, 
length L, with mass evenly distributed over the length of the 
bar, bar with flexural stiffness EJ=const, figure 4a. Determine 
the natural frequency of the oscillation and the natural form of 
the bar. 
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Hình 4. The bar with one end fixed and the other pinned 
Divide the bar into 2 elements (npt=2), the length of each 

element is x=L/2. Let nw, nwx, nq be the hidden numbers of 
displacement, rotation angle and shear force at the two ends of 
each element, respectively, and proceed to number the hidden 
numbers as shown in Figure 4, c, d, e. 

 
 
 









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                          (a1) 

We have the general element stiffness matrix [ae] as follows: 
[ae]= 
       1         2           3            5                6 
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According to (a) we see that element 1 has a displacement equals 
zero at node (1) nw(1)=0, so from the element matrix [ae] we delete 
row 1 column 1, the rest is that element stiffness 1, as follows: 
[ae1]= 
       1         2           3            5                6 
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According to (a) we see that element 2 has a displacement 

equals zero at node (2) nw(2)=0, so from the element matrix [ae] 
we delete row 2 column 2, the rest is that element stiffness 2, as 
follows: 

[ae2]= 
       1         3           4            6               7 
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Create a matrix “0” of size equal to the total number of 
unknowns of the problem (7 unknowns), so we have an overall “0” 
matrix [A(0)] of size (7x7), then assemble [ae1 ] and [ae2] into [A(0)], 
the terms of the same address (i,j) are added, finally we get the 
overall stiffness matrix [A] as follows: 
[A]= 
     1         2         3        4         5            6               7 
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Note that in addition to the hidden displacements, rotation 
angles, and shear forces of the bar, we must also consider the 
unknowns that are the Lagrange  factors of the constrain 
conditions at the two ends of the bar. 

In this lesson, we also add three unknowns 1, 2 and 3 which 
are three Lagrange factors corresponding to three constraints: the 
rotation angle at the bar foot is zero, the bending moment at the 
bar end is zero and the forced displacement at the end of element 
1 of the bar equals y0. As follows: 

 
0V

GFdx
dWg

1xtai)1(phantu
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
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




 

  00y)2,1phantu(yg 33                                  (f1) 

Thus, the overall stiffness matrix [A] will be expanded by three 
rows, three columns become [A(10X10)], not shown here because 
of its large size. In the final overall matrix, also consider the inertia 
force with specific values and positions as follows: Because the bar 
is divided into 2 elements, the two ends of the bar are fixed, so 
there is only the end node of element 1 or the beginning node of 
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the element 2 is the point where the force of inertia is applied with 
a value of:  

LEJk
2
1f 2

1m        where:
m
EJk;

EJ
mk 1

2

1 


 (g1) 

Thus, after expanding by three rows and three columns, we get 
the final overall stiffness matrix of size [A] (10x10), corresponding 
to ten equations of the form: 

    BXA 
       

                                   (h1)  

Where: X is the hidden vector and B is the node force 
vector, B is the column vector of size (10x1), all terms of the 
vector {B} are zero, except B(10,1)=y0. 
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Solving the system of equations (h1), we get the equation 3 
(unknown number 10, due to the forced displacement at the top of 
the bar equal to y0, according to (d)), the equation 3 has the 
following form: 

h/L=1/100 (not considering the lateral shear strain) 

 













 3L

)4.L2
1.k1094425081

0000(-24008640
0y.EJ910x45686.03  

solving the equation 3=0 we get: k1= 14.81/L2 
replacing k1 in (g1), we have:        

4mL

EJ81,14 ;               Analytic solution: 
4mL

EJ41,15  

h/L=1/3 (considering the lateral shear strain) 














 3L

)4.L2
1.k113

(-53760
0y.EJ210x16077.03  

Solving the equation 3=0 we get: k1= 13.15/L2  

replacing k1 in (e), we have: 
4mL

EJ15,13  

Comment: Because of dividing the bar into two elements, on 
the bar there is an inertial force concentrated in the middle of the 
bar (system of one degrees of freedom), so only one fundamental 
frequency is obtained with an error of 3.89% compared to the 
exact result, to get asymptotic results with exact results, we need 
to discretize the bar into more elements, for example, divide the 
bar into 8 elements, we get the result in two cases not considering 
(h/L) =1/100) and considering (h/L=1/10; and h/L=1/3) on the 
effect of lateral shear strain, as follows: 

h/L=1/100 (not cosidering the lateral shear strain) 
When dividing the bar into 8 elements, the problem will 

have a total of 28 unknowns, including (7 hidden 

displacements, 9 hidden angles of rotation, 9 hidden forces of 
shear and three Lagrange factors 1,  2  and 3 respectively 
corresponding to three constraints, the rotation angle at the 
bar foot clamp is zero, the moment at the bar end is zero and 
the forced displacement at the bar end is equal to y0), the 
overall stiffness matrix [A](28X28), So we get 28 equations of 
the form (f): 

    BXA   
Solving this equation, we get 3 of the following form: 
Case 1: h/L=1/100 (without considering the lateral shear 

strain), we have: 
3=.125xEJxy0/l3(-.82699x1059k1

4l8+.10015  x1056k1
6l12+.16364 

x1063k1
2l4-.48687 x1041k1

12l24+ 
.69477 x1046k1

10l20-.41469 x1051k1
8l16+.11854 x1036k1

14l28 

-.34296 x1065)                                                                   (i1) 
Case 2: h/L=1/3 (considering the shear strain) 
3=.125/l3EJ.y0(.44457x1041k1

2l4+39161201157551431.k1
14l28-

.64559 x1038k1^4l8-6666481932951165665280.k1
12l^24 

-.40896 x1043+.277492 x1035k1
6l12- 

4492738334263726156535562240000.k1
8l16+28821139213949

7256570060800.l20k1
10)                                            (k1)  

Solving equations (i1) and (k1) we get the first line and the 
third row of table 1. We see that 3 is a 14 degree polynomial of k1, 
so solving 3=0 we get 14 eigen frequencies i of the problem 
corresponds to two cases h/L=1/100 and h/L=1/3, here only the 
first 3 frequencies are given (table 1) along with three types of 
oscillations and three shape of the corresponding shear force line, 
figure 5, 6. 

Table 1. The natural frequency of oscillation of the bar with 
one end fixed and the other pinned calculated for the two cases 
h/l. Split bar by 8 elements 

Rate h/l 

The first three frequencies 

4i1i mL
EJk  

k11 k12 k13 

1/100 15.401 49.874 103.759 

1/10 14.123 45.313 91.965 

1/3 10.402 31.035 55.142 

 
Table 2. Comparison of the natural frequency of oscillations of 

the bar with one end fixed and the other pinned in the two cases 
without considering and with considering lateral strain. 

Cases 

The first three frequencies 

4i1i mL
EJk  

k11 k12 k13 

Not considered 15.401 49.874 103.759 

Considered 10.153 30.571 54.098 

Difference (%) 34.075 38.707 47.861 
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Table 3. Comparison of the natural frequency of oscillations of 
the bar with one end fixed and the other pinned determined 
according to the finite element and the exact results: 

Cases 

The first three frequencies 

4i1i mL
EJk  

k11 k12 k13 
Analytical method 15.418 49.964 104.266 

Finite element 
method 15.401 49.874 103.759 

Difference (%) 0.11 0.18 0.48 
Comment: 
- According to Tables 1 and 2, we can see that when 

considering the lateral shear strain, the vibration frequency of the 
bar is greatly reduced, the first frequency decreases by 34.075%, 
the second frequency decreases by 38.707%, and the third 
frequency decreases by 47.861%. 

- We see, just discretizing the bar into two elements, we have 
obtained results very close to the results found by analytical 
methods (error 3.89%), when dividing the bar into eight elements, 
the result received has an error of close to zero, the error is (0.11% 
for the first fundamental frequency, 0.18% for the second and 
0.48% for the third frequency). Indeed , the natural frequency 
k11=15.401/L2 (number of elements equals 3) is approximately the 
same as the analytical result. 

With the oscillation frequencies received above, we have the 
corresponding vibration patterns and shear force lines, below the 
author presents three types of vibration and three types of shear 
force lines corresponding to the first three frequencies of vibration, 
figure 5, 6.  

 
Figure 5. Three types of oscillations corresponding to the first three frequencies 

 
Figure 6. Three types of shear lines corresponding to the first three frequencies 

Example 2. The bar with hinged ends 
Given a straight bar with two joint ends, of length L, with a 

mass evenly distributed throughout the length of the bar, the bar 
has flexural stiffness EJ=const, figure 18a. Determine the natural 
frequency of the oscillation and the natural form of the bar. 
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Figure 7. The bar with hinged ends 
Divide the bar into 3 elements (npt=3), the length of each 

element is x=L/3. Let nw, nwx, nq be the hidden numbers of 
displacement, rotation angle and shear force at the ends of each 
element, respectively, and proceed to number the hidden 
numbers as shown in Figure 18, c, d, e. 
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We have the general element stiffness matrix [ae]: 
[ae]= 

       1        2        3        4        5            6 
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According to (a) we see that element 1 has a displacement equal 
zero at node (1) nw(1)=0, so from the element matrix [ae] we delete 
row 1 column 1, the rest is that element stiffness 1, as follows: 
[ae1]= 
       1        3        4        7             8 
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According to (a), we see that element 2 is the middle element 
(not related to boundary conditions), so the common element 
matrix [ae] is the element 2's stiffness matrix, as follows: 
[ae2]= 
       1         2        4        5       8            9 
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According to (a) we see that element 3 has a displacement equal 
zero at node (2) nw(2)=0, so from the element matrix [ae] we delete 
row 2 column 2, the rest is matrix element stiffness 3, as follows: 
[ae3]= 
       2          5        6          9            10 
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Create a matrix “0” of size equal to the total number of 

unknowns of the problem (10 unknowns), so we have an overall 
“0” matrix [A(0)] size (10x10), then assemble [ae1], [ae2] and [ae3] 
into [A(0)], the terms of the same address (i,j) are added, finally we 
get the overall stiffness matrix [A] (not shown in here because the 
size is too large). 

Note that in addition to the hidden displacements, rotation 
angles, and shear forces of the bar, we must also consider the 
unknowns that are the Lagrange  factors of the constrain 
conditions at the two ends of the bar. 

In this lesson, we also add three unknowns 1, 2 and 3 which 
are three Lagrange factors corresponding to three constraints: the 
moment at the ends of the bar is zero and the forced displacement 
at the end of element 1 of the bar is equal to y0. As follows:  
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Thus, the overall stiffness matrix [A] will be expanded by three 
rows and three columns to become [A(13X13)], not shown here 
because of its large size. 

In the final overall matrix, also consider the inertial force with 
specific values and positions as follows: 

Because the bar is divided into 3 elements, the two ends of the 
bar are fixed, so only the end node of element 1 and the end node 
of element 2 is the point where the inertia force is applied with the 
value of: 

LEJk
2
1ff 2

12m1m  ,  

here:
m
EJk;

EJ
mk 1
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1 


                                    (g2) 

Thus, after expanding by three rows and three columns, we get 
the final overall stiffness matrix of [A] size (13x13), corresponding 
to 13 equations of the form: 

    BXA 
       

                                 (h2)  

Where: X  is the hidden vector and the node force vector {B} 
is a column vector of size (13x1), all terms in vector {B} are zero, 
except B(13 ,1)=y0. 
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Solving the system of equations (e), we get the equation 3 
(unknown number 13, due to the forced displacement at the top of 
the bar equal to y0, according to (c)), the equation 3 has the 
following form: 

h/L=1/100 (without considering the lateral shear strain) 

















 8

42
1

42
13 L

).L1.k6254590656+

.L0000.k9722099520-

0000000.(885735000

0y.xEJ33333.0  

Solving the equation 3=0 we get: 
k11= 9.858/L2;   k12= 38.173/L2;    
Substituting k1 into (g2), we have:     

4mL
EJ858.91  ;                4mL

EJ173.382   

h/L=1/3 (taking into account the shear strain) 
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Solving the equation 3=0 we get:k11= 8.94/L2 ; k11= 30.186/L2,    
replacing k1 in (34), we have:   
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4mL
EJ94.81  ; 4mL

EJ186.301

Comment: Because of dividing the bar into three elements, on 
the bar there are two inertial forces concentrated at the end of 
element 1 and the end of element 3 (two degrees of freedom), so 
only two fundamental frequencies are obtained with an error of 
0.11 % compared to the exact result, to get the result asymptotic 
to the exact result, we need to discretize the bar into more 
elements, for example, divide the bar into 8 elements, we get the 
result in two cases. consider (h/L=1/100) and take into account 
(h/L=1/10; and h/L=1/3) on the effect of lateral shear strain, as 
follows: 

When dividing the bar into 6 elements, the problem will have a 
total of 22 unknowns, including (5 displacements, 7 rotations, 7 
shear forces and three Lagrange factors 1, 2 and 3, respectively. 
corresponding to the three constraints, the moment at the ends of 
the bar is zero and the forced displacement at the end of the 
element 1= y0), the overall stiffness matrix [A](22X22), So we get 
22 equations with form (h2): 

    BXA 
Solving this equation, we get 3 of the following form: 
Case 1: h/L=1/100 (without considering the lateral shear 

strain), we have: 
3=.16666*EJ*y0*(.75155e41*k1^2*l^4-.59016e38*k1^4*l^8-

.676740e43+.92947e34*k1^6*l^12-
417094506781648798566456000000.*k1^8*l^16+5188559845051
279738284401.*k1^10*l^20)                                  (i2) 

Case 2: h/L=1/3 (with considering the lateral shear strain), we 
have: 

3=.16666xEJ.y0(342733447.k110l20-0436948463600.k18l16 
+81544352389632000.k16l^12-

196698479456231424000.k14l8+123626142353654415360000.k12
*l4-8662353384119205888000000.)                 (k2)         

Solving equations (i2) and (k2) we get the first line and the 
third row of table 4. We see that 3 is a 10th order polynomial of k1, 
so solving 3=0 we get 10 natural frequencies. i of the problem 
corresponds to the two cases h/L=1/100 and h/L=1/3, here only 
the first 3 frequencies are given (table 4) along with three types of 
oscillations and three shape of the corresponding shear force line, 
figure 8, 9. 

Table 4. The natural frequency of oscillations of the bar with 
hinged ends calculated for the two cases h/l. Split bar by 6 
elements 

Rate h/l 

The first three frequencies 

4i1i mL
EJk

k11 k12 k13

1/100 9.868 39.450 88.586

1/10 9.773 38.001 81.857

1/5 9.501 34.424 68.146

1/3 8.938 28.835 76.494

Table 5. Comparison of the natural frequency of oscillations of 
the bar with hinged ends because in the two cases, with and 
without considering to the lateral shear strain. 

case 

The first three frequencies 

4i1i mL
EJk

k11 k12 k13 
Not considered 9.868 39.420 88.110 

Considered 8.938 28.884 82.832
Difference (%) 9.42 26.72 5.99
Table 6. Comparison of natural oscillation frequencies of the 

bar with hinged ends determined according to the finite element 
method and exact results: 

Cases 

the first three frequencies 

4i1i mL
EJk

k11 k12 k13 
Analytical method 9.869 39.478 88.830 

Finite element 
method 9.868 39.420 88.110

Difference (%) 0.01 0.14 0.81 
Comment: 
- According to Table 4, 5, we can see that, when considering

the lateral shear strain, the vibration frequency of the bar is 
relatively large, the first frequency is reduced by 9.42%, the second 
frequency is reduced by 26.72%, and the third frequency is 
reduced by 5.99%. . 

- We see, just discretizing the bar into three elements has
obtained results very close to the results found by the analytical 
method (error 0.11%), when dividing the bar into 6 elements, the 
result received has an error of close to zero, the error is (0.01% for 
the first fundamental frequency, 0.14% for the second and 0.81% 
for the third frequency). Indeed , the natural frequency 
k11=9.868/L2 (number of elements is 6) coincides with the 
analytical result. 

With the oscillation frequencies received above, we have the 
corresponding vibration patterns and shear force lines, below the 
author presents three types of vibration and three types of shear 
force lines corresponding to the first three frequencies of vibration. 
first, figure 8, 9. 

Figure 8. Three types of oscillations corresponding to the first three frequencies 
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Figure 9. Three types of shear lines corresponding to the first three frequencies 

5. CONCLUSIONS 
With the combination of forced displacement method and

finite element method, the author has successfully built the 
problem of free oscillation of the bar taking into account the 
influence of lateral shear deformation, finding a numerical solution 
of the problem. The problems are completely consistent with the 
results of solving by existing methods. When we divide the bar into 
many elements, we will get many exact solutions. For the bar with 
one end fixed and the other pinned just need to divide the bar into 
8 elements, the results are almost identical to the results when 
solving by analytical method, the error is negligible (the error is 
0.11 respectively). %, 0.18% and 0.48% for the first three 
frequencies - table 3). 

The oscillation frequencies obtained by the finite element 
method almost coincide with the results obtained by the analytical 
method in the case that the effect of the lateral shear strain 
(h/L=1/100) is not taken into account, the error is considered as 
zero, which proves the reliability and efficiency of the finite 
element method for bar vibration problems. 

The results are obtained in two cases with and without taking 
into account the influence of the lateral shear deformation of large 
changes (the natural frequency decreases by 34.075%, 38.707% 
and 47.861%, respectively, corresponding to the first three 
vibration frequencies. - Table 2) for the head-mount bar - the joint 
head, and for the double-ended bar, the frequency reduction is 
31.17%, 45.82. The frequency of oscillation changes depends on 
the ratio h/L, the larger the h/L, the more the frequency decreases 
(Tables 1, 4). This shows that it is necessary to consider the effect of 
lateral shear strain when (h/L 1/10). 

When not considering the lateral shear strain (G) or (h0) 
the expressions, the stiffness matrix and the obtained results 
coincide with the problem built according to the traditional Euler - 
Bernoulli theory. 

When using forced displacement method to solve the problem 
of free oscillation of the bar, it immediately gives us the polynomial 
equation that determines the natural frequency of the bar without 
having to go through complicated transformations to bring the 
matrix back to diagonal matrix and no need to look up the table. 
The finite element method combined with the forced 
displacement method presented here gives us a very efficient 
algorithm, a new approach to evaluate the oscillation frequency of 

the eigenvalue problem of bars and systems of bars. That may be 
the most prominent advantage of this article. 

Recommendation: Use the new approach developed above to 
find eigenvalues and eigenvectors of mechanical problems in 
particular and find solutions of problems with the right side equal 
to zero in general. 
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