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ABSTRACT 

This paper introduces a method for estimating the maximum depth (sub-millimeter) of minor 

cracks on the surface of aluminum plates used in the aeronautical industry. A set of C-scan eddy 

current (EC) images, including real and imaginary parts of the impedance, is analyzed to extract 

suitable features after reducing noise effects, such as background noises and edge noises. Based 

on the obtained features, e.g. maximum impedance, the background feature, background noises, 

type of sensors, a Multilayer Perceptron (MLP) Neural Network is built to estimate the maximum 

depth of the cracks. The network is optimized based on loss functions, such as mean absolute 

error and mean squared error. An optimal network structure with five neurons in the first hidden 

layer and eight neurons in the second hidden layer is chosen. The obtained result indicated that 

the relative error of estimations is lower than 10% for almost all experimental tested samples. 

Keywords: Non-destructive evaluation; Eddy-current technique; Feature extraction; Multi-frequency approach; 

Multilayer perceptron (MLP) neural network. 

1. INTRODUCTION 

In aeronautical industry and services, the fuselage structures that use a laminated metal 

structure are often at risk of damage due to the emergence of minor cracks under the influence of 

complex working conditions. Therefore, early detection of cracks appearing in the aircraft's 

fuselage has a significant role in aviation safety. In many other industrial sectors, the problem of 

detecting and quantifying damages in metal parts is also of great importance in manufacturing, as 

well as in the operation and maintenance of equipment. Non-Destructive Testing/ Estimation 

(NDT/E) method using eddy current is one of the most widely applied methods for this task[1]. 

The advantage of the eddy current NDT/E is high sensitivity and mobility. It has the ability to 

detect defects on and below the object's surface. Moreover, it does not require a complex 

preparation on tested surfaces [2, 3]. Therefore, the NDT/E method using eddy current is widely 

applied to determine qualitatively as well as quantitatively defects on metal structures, such as 

evaluation of surface corrosion of gas pipelines [4-7], inspection of structures in aerospace 

industry [8-10], maintenance of steel plates in road and bridge construction [11-13] or steel-pipes 

used in many different fields [14, 15].  

Many attempts have been made to identify cracks in various massive metal structures. Here 

are some published results for this research field. Ehsan Mohseni [16] improved the reliability of 

the ECT by using a split-D reflection differential probe. This solution allows for good working 

with noises such as surface roughness and frequency of measurements. Marko Jesenik and 

Mladen Trlep proposed an approach [17] for determining the length and depth of cracks in 

conductive metal plates. In their approach, the position of the crack is detected through the 

relationship between the changes in the magnetic density of the measuring points, and the depth 

is determined using the FEM model. Meanwhile, a method is proposed by Zhenwei Wang and 

Yating Yu [18] that uses both traditional eddy current (TEC) (harmonic excitation) and pulse 

eddy current (PEC) simultaneously to estimate multiple crack chains in metal specimens 
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(Multiple Micro - Cracks). In this approach, the TEC technique is used to locate the cracks, while 

the PEC is used to estimate the depth.  

Machine learning techniques are also applied to improve the quality of inspection and 

evaluation of cracks in metal parts. Lulu Titan [19] introduced a statistical approach to extract 

the best data in the eddy current dataset measured under the influence of noise. The author used 

Principal Component Analysis (PCA) method to select features. Faris Nafiah and Ali Sophian 

published a method of crack angular detection, based on the processing of 2D images, and using 

the convolutional neural network (CNN) [20]. In their approach, three features LLS (length of 

extracted linear scans), LSS (linear scan skewness), and LSmax (highest value on linear scan) are 

extracted from scanned images. They are used to determine the depth and rib inclination of 

cracks. Another work was implemented by Milan Smetana [21]. The author combined wavelet 

transform and MLP network to estimate crack depth. For obtained results, the error is less than 

10%, under noisy conditions with the SNR up to 10 dB. 

The size of cracks in most of the above publications is several millimeters. Very few studies 

have been done with crack depth smaller than 1 mm. In our previous work [22], we propose an 

approach using a polynomial model to estimate crack depth in the range from 200 to 800 µm, 

through the processing of S-scan EC signals. The mean error over the entire range is about 10%. 

With the same problem in [22], in this paper, we use MLP network when working with larger 

and less centralized datasets. The used data are the scans of the object's surface, using absolute and 

differential eddy current sensors, operating at two frequencies of 400 kHz and 500 kHz. The 

standard crack depth ranges from 200 µm to 800 µm. From the obtained experimental images, we 

implement a pre processing procedure to reduce the effects of background noise and edge noise 

before extracting features of signals. To estimate the maximum crack depth, a MLP neural network 

is used, with the input being a vector of features extracted from the image processing steps. 

The following sections of this paper are organized as follows: Section 2 presents techniques 

to reduce the effect of noise on measurement data and feature extraction. Section 3 describes the 

structure and hyperparameters of the MLP network obtained from optimization results. Section 4 

presents and evaluates the estimated results. Finally, section 5 are some conclusions and our 

future works. 

2. PREPROCESSING AND FEATURE EXTRACTION 

2.1. Problem formulation 

The data are stored as matrices of the real and imaginary parts of the impedance on the 

measuring surface. As an example, figure 1 shows an image of the real part of sensor impedance. 

In this case, an absolute sensor was scanned on a tested surface to obtain data corresponding to a 

standard crack depth of about 800 µm, due to the affection of the third fatigue period. 

 

Figure 1.  Image of the real part of the impedance of an absolute sensor measured on a sample 

with a crack depth of 800 μm. 

Data were compiled from measurements on eight test samples. The test pieces are divided 

into two groups (denoted A and B) corresponding to 2 types of mechanical force acting on 
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samples. Each group consists of 4 samples and is numbered from 1 to 4. For example, the second 

pattern of the first group is called model A2. Each test piece is subjected to three fatigue cycles 

to produce three standard maximum depths of 200, 400, and 800 µm, correspondingly. 

After each cycle of mechanical stimulation, the specimen surface is scanned by using eddy 

current sensors to collect data. The results are C-scans images, in TIF format, showing the 

impedance value of the sensor, through files of their real parts and imaginary parts. 

The data pre processing procedure includes the computation of the impedance module, the 

removal of background noise and edge noise, the normalization of background and area of tested 

surface, before extracting suitable features. 

2.2. Noise treatment and normalization 

The dataset contains noise which is the change of impedance around the crack. Some of the 

reasons are that the tested surface is affected by an external force during crack formation; the 

sensor is influenced by undetermined factors when performing measurements. Figure 2 shows 

the effect of noise on the test sample A2, in which figure 2a shows the real part, and 2b shows 

the imaginary part of the sensor impedance. For this measurement, an absolute sensor operating 

at the frequency of 500 kHz is used.   

 
(a) 

 
(b) 

Figure 2.  Image of the real (a) and imaginary (b) parts of the impedance of the absolute sensor 

operating on the sample A2 with a depth of 800 µm. 

 
a) 

 
b) 

Figure 3. Impedance module before a) and after noise removal and background normalization b). 

Edge noise on each sample appears at the surface boundary due to the change in the moving 
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direction of the sensor, the difference between impedance of the tested surface and the surrounding 

environment, etc., leading to an abnormal change in values of sensor impedance. However, this 

effect exists on a small area close to the image edges and is easily eliminated by simple cropping. 

As an example, the impact of edge noise on the result of a test is in figure 3. 

The objective of surface noise treatment is to reduce the effect of background noises and edge 

noises. Due to the difference in the size of impedance images, the edge noise treatment also 

standardizes the area of all images. After removing the edge noise, the images have the same size 

of (19, 61) pixels (figure 4). The average value of the sensor impedance outside the area which is 

affected by mechanical force calls the background impedance. We normalize the image 

background by suppressing the background impedance of each image.  

By this way, the background of all images is normalized to zero. On the normalized data, the 

relationship between crack depth and the impedance value, at the position where the crack 

appears, will be investigated. Figure 5 shows the normalized data, taken on sample A2 at the 

third fatigue cycle, using a differential sensor. 

Numbers of features will be extracted from the normalized data. They are used as inputs for 

MLP networks to estimate the maximum crack depth.  

 

 

 

 

 

Figure 4.  Image size normalization: 

outer (darkened) outlines are removed. 

Figure 5. An impedance image after noise removal and 

background normalization (sample A2, third fatigue 

cycle, using the differential sensor to collect data). 

2.3. Feature extraction 

 

Figure 6. The impedance matrix of a differential sensor  

has two peaks with different maximum values. 

The feature of maximum impedance ( maxZ ) is the maximum element (impedance module) of 
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the normalized impedance matrix, as shown in equation (1). For the impedance matrix of a 

differential sensor, there are two peaks, and maxZ is chosen as the larger one (figure 6). 

 
,

ˆmax( )
max i j

Z Z                                                              (1) 

where ,
ˆ

i jZ  is the element at the thi  row and the thj  column of the impedance module matrix 

after normalization.  

The background feature ( groundZ ) provides information on the surface of a tested sample and 

is calculated as equation (2). The positions with the non-zero background may correspond to a 

lift-off between the tested surface and the sensor [18]. Note that if the value of impedance at non-

crack locations is large, it will affect to maxZ  feature. Assuming we have two tested samples. The 

first specimen has a crack of 800 µm deep, and the second one has a crack of 200 µm deep, 

respectively. They have the same value of maxZ (equal to 20, for example). However, the sample 

with a crack depth of 800 µm has 7groundZ  , meanwhile, the one with a crack depth of 200 µm 

has 1.2groundZ  . It indicates that the value maxZ  of the first sample is affected by the procedure 

of background suppression. The large value groundZ  may be caused by the large dropped surface 

around the crack or caused by the larger opened section, the longer and sharper slope of the 800 

µm crack compared to that of 200 µm crack. The feature groundZ  also shows the formation 

characteristic of cracks under different mechanical impacts. 
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1 1
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l g  


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                                           (2) 

where l is the number of rows of the impedance matrix, and g is equal to one third of the number 

of columns of the impedance matrix. 

The feature noiseZ  (background noise) represents the variation range of background 

impedances around the mean value. This feature is the standard deviation of background 

impedance values, calculated as in equation (3). Some tested samples have large groundZ  but 

small noiseZ , and vice versa. The measurement data shows a clear difference of this feature on 

each tested sample, with cracks having different depths. In other words, this feature gives 

information about both the surface of tested samples and the depth of cracks. 
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is the standard deviation of the impedance values ,
ˆ

x jZ  in the thx  row from the thy  to ( )thy z  column. 

The maximum crack depth can be related not only to the maxZ  value, but also to the mean 

value of sensor impedances around the position of maxZ  (called meanZ ) and the variation speed of 

the impedance around that position (called slopeZ ). These features provide information about the 

shape and the size of cracks. 
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The feature meanZ , calculated as in equation (5), is the mean value of five elements next to the 

element maxZ  in an impedance matrix. This value (compared to maxZ ) can provide information 

about the shape of the crack around its deepest point.  

 ,2

1 ˆ
(2 1)

i ml p j mc p

mean i j

i ml p j mc p

Z Z
p

   

   

 
  

  
                                     (5) 

where ( , )ml mc  is the position coordinate of the maximum impedance value and p is the number 

of pixels adjacent to the element maxZ  (in this paper, we set 2p  ). 

The feature slopeZ  is calculated as in equation (6), which is the mean value of standard 

deviation on five impedance rows, around the position of maxZ . In which, the value in each row 

is the standard deviation of five elements around maxZ . slopeZ  represents the narrow of the crack 

bottom. The larger this value the steeper the crack, and vice versa. 

 ( , , )

1

2 1

ml p

slope i mc p

i ml p

Z s
p



 




                                          (6)  

In this paper, we use an additional (digital) characteristic to distinguish the type of sensors. 

Specifically, 0 corresponds to the sensor working at the frequency of 400 kHz, and 1 for the one 

working at the 500 kHz. 

3. NETWORK CONSTRUCTION AND TRAINING  

We use the traditional MLP network (figure 7) for this application, because the number of 

samples for training is small. At the same time, the MLP network is considered universal, used 

well for complex classification problems. Since the output values are between 0 and 1, the 

activation function for the first hidden layer is chosen as the sigmoid function. On the other hand, 

since the features of cracks and the output value are positive, the activation function for the 

remaining hidden layers will be chosen as a tang-hyperbolic function (tanh), because this 

function is always non-negative. 

The dataset is divided into two parts: the training set and the test set. The test set includes 

samples with three different crack depths (200 µm, 400 µm, and 800 µm), measured with both 

types of sensors (absolute and differential type), operating at two different frequencies (400 kHz 

and 500 kHz). Due to the limitation of data, this set consists of six elements. Meanwhile, the 

training set includes 42 different learning patterns.  

The optimization of network configuration is performed by fixing the activation function of 

neurons, changing the number of hidden layers, the number of neurons in each hidden layer, and 

evaluating the learning speed of network. Network parameters are optimized by using Mean 

Square Error (MSE) function (equation 7) and ADAM method. 

 2

1

1
ˆ( )

n

i

MSE p p
n 

                                                      (7)  

where p̂  and p  are the estimation results and actual values of the crack depth. 

Grid Search method [24], K-Fold algorithm (with 8 folds) are used to train and validate the 

networks. To stop training before overfitting occurs, the Early Stopping method is used [20]. 

We tested 3 network configurations with the number of hidden layers are 2, 3, and 4, 

respectively. Results from figure 8 show that the network with 2 hidden layers has the smallest 

MSE, and the smallest difference of error on each tested sample. With three hidden layer 
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network, the MSE is as low as that of the two hidden layer network, but the error on some 

samples is greater than 10%. The model with four hidden layers gives the largest errors due to 

overfitting. The overfitting occurs on this model, because the configuration of network is too 

large to the training data set. Thereby, we choose to use the network with two hidden layers. 
 

 

Figure 7. One type of MLP network structure. Figure 8. Optimizing the number of hidden 

layers. 

For the chosen configuration of the network, using the default learning rate (1 3e ), we 

optimize the number of neurons in each hidden layer. The number of neurons is tested from 1 to 

15. Table 1 shows three tested configurations (6:5:5:1; 6:5:8:1; 6:5:15:1) and their ability, 

evaluated through the Mean Absolute Relative Error (MARE), and the Root Mean Square Error 

(RMSE) as indicated in Equation 8 and Equation 9, respectively. 
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.100
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p p
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
                                             (8) 
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n

i
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where p̂  and p  are the estimation results and actual values of the crack depth. 

Table 1. Optimizing the number of hidden layers  

and the number of neurons in each hidden layer. 

MLP ANN MARE (%) RMSE (µm) 

6:5:5:1 8.57 49.94 

6:5:8:1 4.87 (MAREmin) 37.13 (RMSEmin) 

6:5:15:1 5.29 39.75 

6:5:5:5:1 11.39 70.99 

6:5:5:10:1 13.27 79.82 

6:5:5:15:1 15.48 91.52 
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In this way, we obtain an optimal network structure with five neurons in the first hidden layer 

and eight neurons in the second hidden layer.  

4. RESULTS AND DISCUSSION 

To evaluate estimation results, we use three quantities: root mean squared error (RMSE), 

mean relative error (MRE), and mean precision error (MPE). The RMSE provides overall 

information on the accuracy of the estimation method at all different measurement points. 

However, this quantity does not directly reflect the relative error (RE) of estimation results at 

different depths. So, we use two other quantities MRE and MPE, defined as in equation (10) and 

(11), to characterize the estimation method. 

 
ˆ

% ( .100)
p p

MRE mean
p


                                            (10) 

where p̂  and p  are the estimation results and actual values of the crack depth. 
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RE MRE

MPE
n








                                            (11) 

Note that, the value of RE and therefore MRE can be negative or positive, indicating that the 

estimated values may be smaller or larger than the actual values. The MPE shows the variation of 

RE around the mean value of RE. 

The estimation results on 6 tested samples, for 3 standard depth of cracks (200, 400 and 800 

µm), and using the optimal network are good enough, as shown in table 2. 

Tested results show that the RE is in the range of 0.6% to 8.57%. The mean variation of REs 

is only 3.19%. RMSE on all three different depths (200, 400 and 800 µm) is 32.14 µm. These 

results indicate the high reliability, high accuracy of individual estimations, and the proposed 

estimation method. 

The experiments also showed that the greater the depth of the crack, the more accurate the 

estimation results. For the depth of 200 µm, the mean relative error is about 7%, while that kind 

of error for the crack depth of 800 µm is only 2%. In other words, the greater the depth of the 

crack, the easier to estimate accurately. The tested results show that our proposed approach is 

good enough even for cracks with small depth, and therefore, having a good potential to apply to 

industrial practices. 

Table 2. Some test results of estimation method. 

MRE (%) 4.47 

Max RE (%) 8.57 

Min RE (%) 0.60 

MPE (%) 3.19 

RMSE (µm) 32.14 

5. CONCLUSION  

This paper presented a method to estimate the depth of sub-millimeter cracks on the surface 

of a massive metal structure. The good estimation results show that the noise treatment and the 

feature extraction as proposed in the paper are appropriate. All maximum relative errors do not 

exceed 10%, for all tested samples, at all different depth of cracks (200, 400, and 800 µm). 
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In following studies, we consider the relationship between maximum depth with opened 

surface area, slope of wall crack, and volume of crack, to extract more features that allow 

quantification of other geometric parameters of cracks. In addition, the reconstruction of 3D 

images of cracks is also considered. 
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TÓM TẮT 

Ước lượng độ sâu vết nứt trên các cấu trúc kim loại  

sử dụng mạng Multilayer Perceptron và kỹ thuật dòng điện xoáy 

Bài báo này trình bày một phương pháp xác định độ sâu cực đại (dưới mi-li-mét) của các 

vết nứt nhỏ trên bề mặt các phiến hợp kim nhôm, sử dụng trong công nghiệp hàng không. 

Các bức ảnh C-scan bao gồm phần ảo và phần thực của tổng trở cảm biến được phân tích 

nhằm trích xuất các đặc trưng phù hợp sau khi được loại bỏ các tác động bởi nhiễu, như 

nhiễu nền và nhiễu cạnh. Dựa vào những đặc trưng thu được như trở kháng cực đại, đặc 

trưng của nền, nhiễu bề mặt, loại cảm biến được sử dụng, một mạng Multilayer Perceptron 

(MLP) được xây dựng để ước lượng độ sâu cực đại của các vết nứt. Mô hình mạng được tối 

ưu hóa dựa vào các “hàm mất mát” dạng sai số tuyệt đối trung bình và sai số trung bình 

bình phương cực tiểu. Cấu trúc mạng tối ưu với 5 neuron ở lớp ẩn thứ nhất và 8 neuron ở 

lớp ẩn thứ hai được sử dụng. Kết quả thử nghiệm cho thấy sai số tương đối của các phép 

ước lượng nhỏ hơn 10% đối với toàn bộ dữ liệu trong tập thử nghiệm. 

Từ khóa: Đánh giá không phá hủy; Trích chọn đặc trưng; Phương pháp đa tần; Mạng Perceptron nhiều lớp (MLP). 

 

 

 

 

 

 


