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VIBRATION OF FG SANDWICH BEAMS UNDER MOVING LOAD
USING FIRST-ORDER SHEAR DEFORMABLE BEAM ELEMENT
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Abstract: The dynamic response of functionally graded (FG) sandwich beams excited by a moving point
load is studied by the finite element method. Based on the first-order shear deformation beam theory, a finite
beam element is formulated by using the hierachical shape functions. The beam is assumed to be formed
from a homogeneous ceramic core and two symmetrical FG layers. The implicit Newmark method is
employed in computing the dynamic response of the beams. The numerical results show that the formulated
element is capable to access accurately the dynamic characteristics of the beam by using just several
elements. A parametric study is carried out to highlight the effect of the material distribution, the core

thickness to the beam height ratio and the moving load speed on the vibration characteristics.
Keywords: FG sandwich beam, moving load, vibration, dynamic response, FEM.

1. INTRODUCTION

Analysis of beams subjected to moving loads is a
classical problem in structural mechanics, and it has
been a subject of investigation for a long time. This
problem becomes a interesting topic in the field of
structural mechanics since the date of invention of
FG materials by Japanese scientists in 1984 (M.
Akoizumi,1997). A combination of strong and light
weight ceramics with traditional ductile metals
remarkably enhances the vibration characteristics of
the structures. Functionally graded (FG) sandwich
material is a new type of composite which is widely
used as structural material in recent years. This new
composite has many advantages, including the high
strength-to-weight ratio, good thermal resistance and
no delaminating problem which often meet in the
conventional composites. Investigations on the
vibration analysis of FG sandwich beams have been
extensively carried out recently.

The investigations on the dynamic response of
FG beams (Simsek et al, 2009; 2010; Nguyen et al,
2013) in recent years have shown that the dynamic
deflections of an FG metal-ceramic beam
considerably reduces comparing to that of the pure
beam. In addition, an FG beam induced by a soft
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core may improve the dynamic behavior of the
structure when it subjected to moving loads.
(Mohanty et al, 2012) proposed a finite element
procedure for static and dynamic stability analysis
of FG sandwich Timoshenko beams. (Bui et al,
2013) used the meshfree radial point interpolation
method to study the vibration response of a
cantilever FG sandwich beam subjected to a time-
dependent tip load. Adopting the refined shear
deformation theory, (Vo et al, 2014) investigated
the free vibration and buckling of FG sandwich
beams. In (Vo et al, 2015), presented a finite
element model for the free vibration and buckling
analyses of FG sandwich beams.

The present work aims to study the vibration of
an FG sandwich beam excited by a moving
harmonic load, which to the authors’ best knowledge
has not been investigated so far. The beam in this
work is assumed to be formed from a homogeneous
metallic soft core and two symmetrical FG skin
layers. Based on the first-order shear deformation
beam theory, a finite element beam formulation is
derived and employed in computing the dynamic
response of the beam. A parametric study is carried
out to highlight the effect of the material
distribution, the ratio of core thickness to beam
height as well as the loading parameters on the
vibration characteristics of the beam.
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2. MATHEMATICAL FORMULATION
Figure 1 shows a simply supported FG sandwich
beam with length L, height h, width b, core thickness

Pl v

—_—

h. in a Cartesian co-ordinate system (x,z). The beam
is assumed to be subjected to a point load P, moving
from left to right at a constant speed v.

Cross-section

Figure 1. FG sandwich beam under a moving load

The beam is assumed to be formed from a
ceramic soft core and two FG layers with the volume
fraction of the constituent materials follows a power-
law function as follows
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and Vy=1-V.. The subscripts ‘c’ and ‘m’ are used
to indicate the ‘ceramic’ and ‘metal’, respectively. In
Eq.(1), n is the material power-law index. From
Eq.(1) one can see that the top and bottom surfaces
of the beam are pure metal, and the core is full
ceramic. The effective property P(z) (e.g., Young’s
modulus, shear modulus and mass density) can be
evaluated by Voigt model.

Using the first-order shear deformation theory,
the strain energy U, and the kinetic energy T, of the
beam element are as follow (D.K. Nguyen and V.T.
Bui , 2017)
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in which Aj; and Ij; are the rigidities and
mass moments of the beam element,
respectively.

The finite element method is used. The beam is
assumed being divided into a numbers of two-
node beam elements with length of |. By using the
hierachical shape functions, the shear strain y; to
constant (D.K. Nguyen and V.T. Bui, 2017), the
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vector of nodal displacements (d) for a generic
beam element is given by

d ={u1 W, 6, 6, u, w, Hz}T (4)

The displacements and rotation are interpolated
from the nodal displacements

u,=N,d, w,=N,d, =N, (5)

with
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N,={N,0 0 ON,00},N,={00 N, N;0O ON,},
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in which N, Ny, N3, N4 are the hierachical shape
functions (D.K. Nguyen and V.T. Bui , 2017).

One can write the strain energy (U), kinetic
energy (T) in term of the nodal displacement vector
as follows

M|
U=%ZﬁT@w+kw+k%+hﬁd
) . W)
T= EZl:dT(m““ +m_ +m,+m,,)d
iz
where ng is the total number of the elements. The
stiffness matrices ku,, Kug, Ko, K, and the mass
matrices myy, Myw, M,y My in (D.K. Nguyen and
V.T. Bui, 2017).
Equations of motion for the beam in terms of
finite element analysis as follows
MD+KD=F (8)
in which M, K and F respectively are the
global mass, stiffness matrices and load vector.
These matrices and vector are obtained by
assembling the element mass, stiffness and load

(6)

vector m, k and f derived above in the standard
way of the finite element analysis. Eq. (8) can be
solved by the direct integration Newmark
method. Here, the average acceleration method
which ensures the unconditional stability is
employed.

3. NUMERICAL RESULTS

A simply supported beam composed of metal
phase Alumina (Al,O3) core and FGM parts are
composed of Aluminum and Alumina (Al and
Al,O3). The properties of these component
materials are Al: En,=70 GPa, pn=2702 kg/m?, vy,
= 0.3, Al,O3: E;=380 GPa, p. =3960 kg/m? v, =
0.3. The slenderness ratio (L/h) of the beam is
taken as L/h=20. The amplitude of the moving
load is taken by P=100kN. For Newmark method
in all the computations reported below, a uniform
increment time step, t=T/500, T=L/v is the
necessary total time for the load to cross the
beam.

Table 1. Comparison of fundamental frequency parameter

Ratio of hardcore

n Source hc/h=0 | hc/h=1/5 | hc/h=1/4 | hc/h=1/3 | hc/h=2/5 | hc/h=1 | hc/h=4/5
(1-0-1) (2-1-2) (2-1-1) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

0.5 | Voetal.,2014 | 4.3148 4.4290 4.4970 4.5324 4.6170 4.6979 5.1067
Present work 4.3139 4.4281 4.3626 4.5316 4.4448 4.6973 5.1065

1 | Voetal.,2014 | 3.7147 3.8768 3.9774 4.0328 4.1602 4.2889 4.9233
Present work 3.7137 3.8758 3.8305 4.0319 3.9884 4.2882 4.9231

2 | Voetal,2014 | 3.1764 3.3465 3.4754 3.5389 3.7049 3.8769 4.7382
Present work 3.1753 3.3455 3.3375 3.5379 3.5554 3.8761 4.7379

Table 1 lists the fundamental frequency are the mass density and Young’s modulus of the

parameter u of the FG sandwich beam for various
values of the core thickness to the beam height
ratio hc/h and the material index n. The frequency
parameter in this Table is defined as follows:
pu=wl’/h/p IE in which o is the

fundamental frequency of the beam, and p,, and E,
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core material, respectively. Results of this paper
are compared to the result obtained by using
refined shear deformation theory in (Vo et
al.,2014). As observed from the table, the present
results are in good agreement with that of (Vo et
al.,2014).
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Table 2. Comparison of maximum dynamic deflection factor,max(fD),
and moving load speed of FG beam

Source Al,O3 . n=0.2 n=0.5 n=1 n=2
(252 m/s’) (222 m/s) (198 m/s) (179 m/s) (164 m/s)
Present work 0.9382 1.0306 1.1509 1.2569 1.3450
Nguyen et al.,2017 0.9380 1.0402 1.1505 1.2566 1.3446
Khalili et al.,2010 0.9317 1.0233 1.1429 1.2486 1.3359

Note: “Moving load speed

In Table 2, the maximum dynamic deflection
factor, max(fD), of the beam is given for values the
material index n.fD=max(w(L/2,t))/w,where
W is the static deflection of homogeneous beam
made of the pure material under a static load Py at
the mid-span,w, =P,L>/48E_I. As seen from
Table 2, the maximum fD and the corresponding
velocity of present work are in good agreement with
that of (Nguyen et al, 2017; Khalili et al., 2010). It is
worth to mention that the results in Tables 1 and 2
are converged by using twenty elements.

The effects of material index n, ratio hc/h and
moving load speed on the dynamic response of the
beam traversed by a single load are illustrated in Figure
2 and 3. Figure 2 shows relation between dynamic
deflection factor and various values of index n with
diffirent ratio hc/h at v=25m/s. With any value of the
ratio he/n, when n increases, the dynamic deflection
factor fD increases. And when h¢/h increases, the
dynamic deflection factor fD decreases irrespective of
the moving load speed. The relation between the
moving load speed and the maximum mid-span

deflection, as seen from Figure 3 is similar to that of
the homogenous beam, and the largest deflect attains at
a lower moving load speed for the beam associated
with a higher index n and ratio lower hc/h.
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Figure 2. Relation between dynamic deflection
factor and various values of index n with diffirent
ratio hc/h : v=25m/s
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Figure 3. Relation between dynamic deflection factor with moving load speed
for various indexes n: a) hc/h=1/3 and various index of n; b) n=3, various h¢/h.
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Figure 4. Time histories for normalized mid-span deformation with diffirent moving
load speeds, n=3: a) hc/h=1/3; b) hc/h=4/5.

The effects of moving load speed on the time
histories for mid-span deformation are illustrated in
the figure 4. One can see that when moving load
speed v increases, maximum deformation increases
and oscillation frequency of the beam decreases.
This trend also occurs for the higher h¢/h.

4. CONCLUSTION

The paper investigated the vibration of FG
sandwich beam excited by a moving point load by
using the finite element method. The beam is
assumed to be formed from a homogeneous ceramic
hard core and two symmetrical FG layer. A beam
element based on the first-order shear deformation
beam theory was formulated and employed in the
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Tom tit:
DAO PONG CUA DAM SANDWICH FG DUOI TAC PONG CUA LUC
DI PONG SU DUNG PHAN TU BIEN DANG TRUQT BAC NHAT

Pdp iimg dong luc hoc cia dam sandwich FG chju tdac déng cua luc tdp trung di déng dioc nghién cizu bang
phirong phdp phan i hitu han. Phan tiz dam duwoc dimg dé tinh toan six dung ham dgng thiz bac dwa trén ly
thuyét bién dang trieot bdc nhat. Dam dwroc cdu trac tir 16i gom va 2 16p vat liéu ¢ co tinh bién thién doi
xitng. Phirong phdp tich phan truc tiép Newmark dn dioc sir dung d@é tinh todn déap vmg dong lic hoc cia
dam. Két qua s6 cho thdy véi mét s6 phan i diroc thanh Idp 6 kha nang ddp 1ng tét dén bikc tranh dao
déng cua dam. Nghién ciu ciing 1am sang té anh hwong cuia sy phan be tham sé vat liéu, ty 1¢ chiéu cao lop
18i va toc do cua liee di dong dén dic trung dao dong cua dam.

Tir khéa: dim sandwich FG, luc di dong, dao dong, dap tng dong luc hoc, FEM

Ngay nhdn bai: 17/7/2019
Ngay chdp nhdn dang: 28/8/2019

KHOA HQC KY THUAT THUY LOT VA MOI TRUONG - SO DAC BIET (10/2019) - HOI NGHI KHCN LAN THU XII - CLB CO KHi - DONG LUC 229



