
TNU Journal of Science and Technology 227(07): 56 - 64 

 

http://jst.tnu.edu.vn                                                        56                                             Email: jst@tnu.edu.vn 

A SELF-ADAPTIVE ITERATIVE ALGORITHM FOR SOLVING THE SPLIT 

VARIATIONAL INEQUALITY PROBLEM IN HILBERT SPACES 
 

Nguyen Minh Hieu1, Tran Thi Huong2* 
1School of Applied Mathematics and Informatics - Hanoi University of Science and Technology 
2TNU - University of Technology 
 

ARTICLE INFO ABSTRACT 

Received:  16/11/2021 The split variational inequality problem (SVIP) was first introduced 

by Censor et al. Up to now, there is a long list of works concerning 

algorithms to solve (SVIP). In this paper, we study the split 

variational inequality problem in Hilbert spaces. In order to solve this 

problem, we propose a self-adaptive algorithm. Our algorithm uses 

dynamic step-sizes, chosen based on information of the previous step 

and their strong convergence is proved. In comparison with the work 

by Censor et al. (Numer. Algor., 59:301–323, 2012), the new 

algorithm gives strong convergence results and does not require 

information about the spectral radius of the operator. And then, we 

give a numerical experiment to illustrate the performance of our 

algorithm. 

Revised:  19/4/2022 

Published:  27/4/2022 

KEYWORDS 

Split feasibility problem  

Variational inequality 

Hilbert spaces  

Nonexpansive mapping  

Fixed point 
 

 

THUẬT TOÁN LẶP TỰ THÍCH NGHI GIẢI BÀI TOÁN BẤT ĐẲNG THỨC 

BIẾN PHÂN TÁCH TRONG KHÔNG GIAN HILBERT 
 

Nguyễn Minh Hiếu1, Trần Thị Hương2* 
1Viện Toán ứng dụng và Tin học - Trường Đại học Bách khoa Hà Nội 
2Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên 
 

THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  16/11/2021 Bài toán bất đẳng thức biến phân tách (SVIP) được nghiên cứu đầu 

tiên bởi Censor và các cộng sự. Đến nay, có rất nhiều công trình 

nghiên cứu các thuật toán để giải bài toán SVIP. Trong bài báo này, 

chúng tôi đề cập đến bài toán bất đẳng thức biến phân tách trong 

không gian Hilbert. Để giải bài toán, chúng tôi trình bày một thuật 

toán tự thích nghi, sử dụng cỡ bước được chọn dựa trên thông tin của 

các bước lặp trước đó, đồng thời chứng minh sự hội tụ mạnh của 

thuật toán. So với công trình nghiên cứu của tác giả Censor (Numer. 

Algor., 59:301–323, 2012), thuật toán mới của chúng tôi cho kết quả 

hội tụ mạnh và không cần sử dụng bán kính phổ của toán tử. Cuối 

cùng, chúng tôi đưa ra ví dụ minh họa cho phương pháp đã đề xuất. 

Ngày hoàn thiện:  19/4/2022 

Ngày đăng:  27/4/2022 

TỪ KHÓA 

Bài toán chấp nhận tách  

Bất đẳng thức biến phân  

Không gian Hilbert  

Ánh xạ không giãn  

Điểm bất động 
 

 

 

 

 

 

DOI: https://doi.org/10.34238/tnu-jst.5260 

 
* Corresponding author.  Email: tranthihuong@tnut.edu.vn 

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
https://doi.org/10.34238/tnu-jst.5260


1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner product 〈., .〉 and norm ‖.‖. Variational
Inequality Problem (VIP) [1], [2] is the problem of finding a point u∗ in a subset C of a Hilbert space
H such that

〈Au∗,u−u∗〉 ≥ 0 ∀u ∈C, (VIP(A,C))

where A : C→H is a mapping, and we denote solution set of (VIP(A,C)) by S(A,C).

The Split Feasibility Problem (SFP) proposed by Censor and Elfving [3] is finding a point

u∗ ∈C and Fu∗ ∈ Q, (SFP)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively
and F : H1→H2 is a bounded linear operator.

In this paper we discuss a self-adaptive algorithm for solving the Split Variational Inequality
Problem which was studied by Censor et al. in [4]

find u∗ ∈ S(A,C) and Fu∗ ∈ S(B,Q). (SVIP)

To solve the (SVIP), Censor et al. [4] presented a weak convergence result when A and B are
ηA,ηB-inverse strongly monotone operators on H1 and H2, respectively.

In the present article, our aim is to introduce an iterative algorithm to solve the (SVIP) by using
the viscosity approximation method [5], cyclic iterative methods [3], [6], [7] and a modification
of the CQ–algorithm [8], [9]. We prove the strong convergence of the presented algorithm under
some mild conditions. Particularly, in our method, the step size is selected in such a way that its
implementation does not need any prior information on the norm of the transfer operators.

2. Preliminaries

In this section, we introduce some mathematical symbols, definitions, and lemmas which can be
used in the proof of our main result.

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖ and C be a nonempty,
closed and convex subset of H . In what follows, we write xk ⇀ x to indicate that the sequence {xk}
converges weakly to x while xk→ x indicate that the sequence {xk} converges strongly to x. It is
known that in a Hilbert space H ,

2〈x,y〉= ‖x+ y‖2−‖x‖2−‖y‖2 = ‖x‖2 +‖y‖2−‖x− y‖2, (1)

and
‖λx+(1−λ )y‖2 = λ‖x‖2 +(1−λ )‖y‖2−λ (1−λ )‖x− y‖2, (2)

for all x,y ∈H and λ ∈R (see, for example [10, Lemma 2.13], [11]). For each x ∈H there exists a
mapping PC : H →C such that ‖x−PCx‖ ≤ ‖x− y‖ ∀x,y ∈C. The mapping PC is called the metric
projection of H onto C.

Lemma 2.1. (see [12]) (i) PC is a nonexpansive mapping.

(ii) PCx ∈C ∀x ∈H and PCx = x ∀x ∈C.
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(iii) x ∈H , y = PCx if and only if y ∈C and 〈x− y,z− y〉 ≤ 0 ∀z ∈C.

Definition 2.1. An operator T : H →H is called a contraction operator with the contraction
coefficient τ ∈ [0,1) if ‖T x−Ty‖ ≤ τ‖x− y‖ ∀x,y ∈H .

It is easy to see that, if T is a contraction operator, then PCT is a contraction operator too. If
τ ≥ 0 we have τ-Lipschitz continuous operator.

Definition 2.2. Let H1 and H2 be two Hilbert spaces and let F : H1→H2 be a bounded linear
operator. An operator F∗ : H2→H1 with the property 〈Fx,y〉= 〈x,F∗y〉 for all x ∈H1 and y ∈H2,
is called an adjoint operator of F .

The adjoint operator of a bounded linear operator F on a Hilbert space always exists and is
uniquely determined. Furthermore, F∗ is a bounded linear operator.

Definition 2.3. An operator A : H →H is called an η-inverse strongly monotone operator with
constant η > 0 if 〈Ax−Ay,x− y〉 ≥ η‖Ax−Ay‖2 ∀x,y ∈H .

It is easy to see that, if A is an η-inverse strongly monotone operator, then IH − λA is a
nonexpansive mapping for λ ∈ (0,2η ].

Lemma 2.2. (see [4]) Let A : C→H be η-inverse strongly monotone on C and λ > 0 be a constant
satisfying 0 < λ ≤ 2η . Define the mapping T : C→C by taking

T x = PC
(
IH −λA

)
x ∀x ∈C. (3)

Then T is nonexpansive mapping on C, furthermore, Fix(T ) = S(A,C) is the set of fixed points of T ,
where Fix(T ) := {x ∈C

∣∣ T x = x}.

Lemma 2.3. (see [12]) Assume that T be a nonexpansive mapping of a closed and convex subset C
of a Hilbert space H into H . Then the mapping IH −T is demiclosed on C; that is, whenever {xk}
is a sequence in C which weakly converges to some point u∗ ∈C and the sequence {(IH −T )xk}
strongly converges to some y, it follows that (IH −T )u∗ = y.

From Lemma , if xk ⇀ u∗ and (IH −T )xk→ 0, then u∗ ∈ Fix(T ).

Lemma 2.4. (See [2]) Let {sk} be a real sequence which does not decrease at infinity in the sense
that there exists a subsequence {skn} such that skn ≤ skn+1 ∀n ≥ 0. Define an integer sequence by
ν(k) := max

{
k0 ≤ n≤ k | sn < sn+1

}
, k≥ k0. Then ν(k)→∞ as k→∞ and for all k≥ k0, we have

max{sν(k),sk} ≤ sν(k)+1.

Lemma 2.5. (see [13]) Let {sk} be a sequence of nonnegative numbers satisfying the condition
sk+1 ≤ (1−bk)sk +bkck, k ≥ 0, where {bk} and {ck} are sequences of real numbers such that

(i) {bk} ⊂ (0,1) for all k ≥ 0 and ∑
∞
k=1 bk = ∞,

(ii) limsupk→∞ ck ≤ 0.

Then, limk→∞ sk = 0.

3. Main Results

In this section, we use the viscosity approximation method and a modification of the CQ–
algorithm to establish the strong convergence of the proposed algorithm for finding the solution of
the (SVIP). We consider the (SVIP) under the following conditions.
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Assumption 3.1.

(A1) A : H1→H1 is ηA-inverse strongly monotone on H1.
(A2) B : H2→H2 is ηB-inverse strongly monotone on H2.
(A3) F : H1→H2 be a bounded linear operator.
(A4) T : H1→H1 is a contraction operator with the contraction coefficient τ ∈ [0,1).
(A5) The solution set ΩSVIP of (SVIP) is not empty.

If A and B satisfy the properties (A1) and (A2), respectively, the solution sets S(A,C) and S(B,Q)

are closed and convex. Here, for the sake of convenience, an empty set is considered to be closed
and convex. Therefore, the solution set ΩSVIP of the (SVIP) is also closed and convex.

Algorithm 1

Step 0. Select the initial point x1 ∈H1 and the sequences {αk}, {βk}, {ρk}, {κk}, and λ such
that the conditions

{αk} ⊂ (0,1), αk→ 0 as k→ ∞, and
∞

∑
k=1

αk = ∞, (C1)

0 < λ ≤ 2η , η = min{ηA,ηB}, (C2)

{βk} ⊂ [a,b]⊂ (0,1), (C3)

{ρk} ⊂ [c,d]⊂ (0,1), {κk} ⊂ (0,K), K > 0 (C4)

are satisfied. Set k := 1.
Step 1. Compute yk = βkxk +(1−βk)PC

(
IH1−λA

)
xk.

Step 2. Compute zk = PQ
(
IH2−λB

)
Fyk.

Step 3. Compute vk = yk + γkF∗(zk−Fyk), where the step size γk is defined by

γk = ρk
‖zk−Fyk‖2

‖F∗(zk−Fyk)‖2 +κk
. (4)

Step 4. Compute xk+1 = αkT xk +(1−αk)vk.
Step 5. Set k := k+1 and go to Step 1.

Theorem 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Then the sequence {xk}
generated by Algorithm 1 converges strongly to the unique solution of the VIP(IH1−T,ΩSVIP).

Proof. Since T is a contraction mapping, PΩSVIPT is a contraction too. By Banach contraction
operator principle, there exists a unique point u∗ ∈ ΩSVIP such that PΩSVIPTu∗ = u∗. By Lemma
2.1(iii), we obtain u∗ is the unique solution to the VIP(IH1−T,ΩSVIP). Since u∗ ∈ΩSVIP, u∗ ∈ S(A,C)

and Fu∗ ∈ S(B,Q).

Let u ∈ΩSVIP, u ∈ S(A,B). Since Lemma 2.2, u = PC
(
IH1−λA

)
u. From Step 1 in Algorithm 1,

the nonexpansive property of PC
(
IH1−λA

)
(see Lemma 2.2), and (2), we have that

‖yk−u‖2 =
∥∥∥βk(xk−u)+(1−βk)

[
PC
(
IH1−λA

)
xk−PC

(
IH1−λA

)
u
]∥∥∥2

≤ βk‖xk−u‖2 +(1−βk)‖xk−u‖2−βk(1−βk)
∥∥xk−PC

(
IH1−λA

)
xk
∥∥2

= ‖xk−u‖2−βk(1−βk)
∥∥xk−PC

(
IH1−λA

)
xk
∥∥2

(5)

≤ ‖xk−u‖2. (6)
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It follows from Step 3 in Algorithm 1, the property of adjoint operator F∗, and (1) that

‖vk−u‖2 =
∥∥yk + γkF∗

(
zk−Fyk)−u

∥∥2

= ‖yk−u‖2 + γ
2
k

∥∥F∗
(
zk−Fyk)∥∥2

+2γk
〈
yk−u,F∗

(
zk−Fyk)

〉
= ‖yk−u‖2 + γ

2
k

∥∥F∗
(
zk−Fyk)∥∥2

+2γk
〈
Fyk−Fu,zk−Fyk〉

= ‖yk−u‖2 + γ
2
k ‖F∗

(
zk−Fyk)‖2 + γk

(∥∥zk−Fu
∥∥2−

∥∥Fyk−Fu
∥∥2−

∥∥zk−Fyk
∥∥2
)
.

Since u ∈ΩSVIP, Fu ∈ S(B,Q). It follows from Lemma 2.2 that Fu = PQ
(
IH2−λB

)
Fu. From Steps 2

and 3 in Algorithm 1, the nonexpansive property of PQ
(
IH2−λB

)
, (4), (C4), and the last inequality,

we obtain

‖vk−u‖2 = ‖yk−u‖2 + γ
2
k

∥∥F∗
(
zk−Fyk)∥∥2

+ γk

(∥∥PQ
(
IH2−λB

)
Fyk−PQ

(
IH2−λB

)
Fu
∥∥2−

∥∥Fyk−Fu
∥∥2−

∥∥zk−Fyk
∥∥2
)

≤ ‖yk−u‖2 + γ
2
k

∥∥F∗
(
zk−Fyk)∥∥2

+ γk

(∥∥Fyk−Fu
∥∥2−

∥∥Fyk−Fu
∥∥2−

∥∥zk−Fyk
∥∥2
)

= ‖yk−u‖2 + γ
2
k

∥∥F∗
(
zk−Fyk)∥∥2− γk

∥∥zk−Fyk
∥∥2

≤ ‖yk−u‖2 +ρ
2
k

∥∥zk−Fyk
∥∥4(∥∥F∗(zk−Fyk)
∥∥2

+κk
)2

(∥∥F∗
(
zk−Fyk)∥∥2

+κk
)
−ρk

∥∥zk−Fyk
∥∥4∥∥F∗(zk−Fyk)
∥∥2

+κk

= ‖yk−u‖2−ρk(1−ρk)

∥∥zk−Fyk
∥∥4∥∥F∗(zk−Fyk)
∥∥2

+κk

(7)

≤ ‖yk−u‖2. (8)

It follows from the convexity of the norm function ‖.‖ on H1, the contraction property of T with the
contraction coefficient τ ∈ [0,1), (6), (8), and Step 4 in Algorithm 1 that

‖xk+1−u‖=
∥∥αk
(
T xk−u

)
+(1−αk)(vk−u)

∥∥≤ αk
(∥∥T xk−Tu

∥∥+∥∥Tu−u
∥∥)+(1−αk)‖vk−u‖

≤ ταk‖xk−u‖+αk
∥∥Tu−u

∥∥+(1−αk)‖xk−u‖

=
[
1− (1− τ)αk

]
‖xk−u‖+(1− τ)αk

∥∥Tu−u
∥∥

1− τ

≤max
{
‖xk−u‖,

∥∥Tu−u
∥∥

1− τ

}
≤ ·· · ≤max

{
‖x0−u‖,

∥∥Tu−u
∥∥

1− τ

}
.

This implies that the sequence {xk} is bounded. Since PC and PQ are nonexpansive mappings and F
is the bounded linear operator, we also have the sequences {yk}, {zk}, and {vk} are bounded.

Now we claim that limn→∞ ‖xk−u∗‖= 0, where u∗ is the unique solution of the VIP(IH1− T,ΩSVIP),
that is, u∗ = PΩSVIPTu∗. Indeed, from the convexity of ‖.‖2, Step 4 in Algorithm 1, (5), (7) with u
replaced by u∗, and the condition (C1), we get

‖xk+1−u∗‖2 =
∥∥αk(T xk−u∗)+(1−αk)(vk−u∗)

∥∥2 ≤ αk
∥∥T xk−u∗

∥∥2
+(1−αk)‖vk−u∗‖2

≤ αk
∥∥T xk−u∗

∥∥2
+‖yk−u∗‖2−ρk(1−ρk)

∥∥zk−Fyk
∥∥4∥∥F∗(zk−Fyk)
∥∥2

+κk

≤ αk
∥∥T xk−u∗

∥∥2
+‖xk−u∗‖2−ρk(1−ρk)

∥∥zk−Fyk
∥∥4∥∥F∗(zk−Fyk)
∥∥2

+κk

−βk(1−βk)
∥∥xk−PC

(
IH1−λA

)
xk
∥∥2
.
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Hence,

ρk(1−ρk)

∥∥zk−Fyk
∥∥4∥∥F∗(zk−Fyk)
∥∥2

+ak

+βk(1−βk)
∥∥xk−PC

(
IH1−λA

)
xk
∥∥2

≤
(
‖xk−u∗‖2−‖xk+1−u∗‖2

)
+αk

∥∥T xk−u∗
∥∥2
. (9)

Next, from Step 4 in Algorithm 1 and the contraction property of T with the contraction coefficient
τ ∈ [0,1), we have that

‖xk+1−u∗‖2 = 〈αk(T xk−u∗)+(1−αk)(vk−u∗),xk+1−u∗〉
= (1−αk)〈vk−u∗,xk+1−u∗〉+αk〈T xk−u∗,xk+1−u∗〉

≤ 1−αk

2

(
‖vk−u∗‖2 +‖xk+1−u∗‖2

)
+αk〈T xk−Tu∗,xk+1−u∗〉+αk〈Tu∗−u∗,xk+1−u∗〉

≤ 1−αk

2

(
‖vk−u∗‖2 +‖xk+1−u∗‖2

)
+

αk

2

(
τ‖xk−u∗‖2 +‖xk+1−u∗‖2

)
+αk〈Tu∗−u∗,xk+1−u∗〉.

This implies that ‖xk+1− u∗‖2 ≤ (1−αk)‖vk− u∗‖2 +αkτ‖xk− u∗‖2 + 2αk〈Tu∗− u∗,xk+1− u∗〉.
From (6), (8) with u replaced by u∗, and the last inequality, we obtain

‖xk+1−u∗‖2 ≤
[
1− (1− τ)αk

]
‖xk−u∗‖2 +2αk〈Tu∗−u∗,xk+1−u∗〉. (10)

We consider two cases.

Case 1. There exists an integer k0 ≥ 0 such that ‖xk+1−u∗‖ ≤ ‖xk−u∗‖ for all k ≥ k0.

Then, limk→∞ ‖xk−u∗‖ exists. From the boundedness of the sequence {T xk}, the conditions (C1),
(C3), and (C4), it follows from (9) that

lim
k→∞

∥∥xk−PC
(
IH1−λA

)
xk
∥∥= 0, (11)

and
lim
k→∞

‖zk−Fyk‖= 0. (12)

From Step 1 in Algorithm 1 and (C3), we get

lim
k→∞

‖xk− yk‖= (1−βk) lim
k→∞

∥∥xk−PC
(
IH1−λA

)
xk
∥∥= 0. (13)

Hence,
lim
k→∞

∥∥[IH1−PC
(
IH1−λA

)]
xk
∥∥= 0. (14)

From Step 2 in Algorithm 1 and (12), we obtain

lim
k→∞

∥∥[IH2−PQ
(
IH2−λB

)]
Fyk
∥∥= 0. (15)

From Step 3 in Algorithm 1, the property of adjoint operator F∗, and (12), we obtain

‖vk− yk‖= γk‖F∗(zk−Fyk)‖→ 0 as k→ ∞. (16)

It follows from (13) and (16) that

‖xk− vk‖→ 0 as k→ ∞. (17)
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Using the boundedness of {vk} and {T xk}, Step 4 in Algorithm 1, and the condition (C1), we also
have ‖xk+1− vk‖= αk‖T xk− vk‖→ 0 as k→ ∞. When combined with (17), this implies that

‖xk+1− xk‖→ 0 as k→ ∞. (18)

Now we show that limsupk→∞〈Tu∗−u∗,xk+1−u∗〉 ≤ 0. Indeed, suppose that {xkn} is a subsequence
of {xk} such that

limsup
k→∞

〈Tu∗−u∗,xk−u∗〉= lim
kn→∞

〈Tu∗−u∗,xkn−u∗〉. (19)

Since {xkn} is bounded, there exists a subsequence {xknl } of {xkn} which converges weakly to some
point u†. Without loss of generality, we may assume that xkn ⇀ u†. We will prove that u† ∈ΩSVIP.
Indeed, from (14), Lemmas 2.2 and 2.3, we obtain u† ∈ S(A,C). Moreover, since F is a bounded
linear operator, Fxkn ⇀ Fu†. Using (17), Lemmas 2.2 and 2.3, we also obtain Fu† ∈ S(B,Q). Hence,
u† ∈ΩSVIP. So, from u∗ = PΩSVIPTu∗, (19), and Lemma 2.1(iii) we deduce that

limsup
k→∞

〈Tu∗−u∗,xk−u∗〉= 〈Tu∗−u∗,u†−u∗〉 ≤ 0,

which combined with (18) gives

limsup
k→∞

〈Tu∗−u∗,xk+1−u∗〉 ≤ 0. (20)

Now, the inequality (10) can be rewritten in the form ‖xk+1− u∗‖2 ≤ (1− bk)‖xk− u∗‖2 + bkck,
k ≥ 0, where bk = (1− τ)αk and ck = 2

1−τ
〈Tu∗− u∗,xk+1− u∗〉. Since the condition (C1) and

τ ∈ [0,1), {bk} ⊂ (0,1) and ∑
∞
k=1 bk = ∞. Consequently, from τ ∈ [0,1) and (20), we have that

limsupk→∞ ck ≤ 0. Finally, by Lemma 2.5, limk→∞ ‖xk−u∗‖= 0.

Case 2. There exists a subsequence {kn} of {k} such that ‖xkn−u∗‖ ≤ ‖xkn+1−u∗‖ for all n≥ 0.

Hence, by Lemma 2.4, there exists an integer, nondecreasing sequence {ν(k)} for k ≥ k0 (for some
k0 large enough) such that ν(k)→ ∞ as k→ ∞,

‖xν(k)−u∗‖ ≤ ‖xν(k)+1−u∗‖ and ‖xk−u∗‖ ≤ ‖xν(k)+1−u∗‖ (21)

for each k ≥ 0. From (10) with k replaced by ν(k), we have

0 < ‖xν(k)+1−u∗‖2−‖xν(k)−u∗‖2 ≤ 2αν(k)〈Tu∗−u∗,xν(k)+1−u∗〉.

Since αν(k)→ 0 and the boundedness of {xν(k)}, we conclude that

lim
k→∞

(
‖xν(k)+1−u∗‖2−‖xν(k)−u∗‖2)= 0. (22)

By a similar argument to Case 1, we obtain

lim
k→∞

∥∥[IH1−PC
(
IH1−λA

)]
xν(k)

∥∥= 0 and lim
k→∞

∥∥[IH2−PQ
(
IH2−λB

)]
Fyν(k)

∥∥= 0.

Also we get ‖xν(k)+1 − u∗‖2 ≤
[
1− (1− τ)αν(k)

]
‖xν(k) − u∗‖2 + 2αν(k)〈Tu∗ − u∗,xν(k)+1 − u∗〉,

where limsup
n→∞

〈Tu∗−u∗,xν(k)+1−u∗〉 ≤ 0. Since the first inequality in (21) and αν(k) > 0, we have

that (1− τ)‖xν(k)−u∗‖2 ≤ 2〈Tu∗−u∗,xν(k)+1−u∗〉.
Thus, from limsupn→∞〈Tu∗−u∗,xν(k)+1−u∗〉 ≤ 0 and τ ∈ [0,1), we get lim

k→∞

‖xν(k)−u∗‖2 = 0.

This together with (22) implies that lim
k→∞

‖xν(k)+1− u∗‖2 = 0. Which together with the second

inequality in (21) implies that lim
k→∞

‖xk−u∗‖= 0. This completes the proof.

nd Technologyaf Science oJournal TNU 64-56: )7(0722

http://jst.tnu.edu.vn jst@tnu.edu.vnEmail: 62



4. Numerical Results
We give a numerical experiment to illustrate the performance of our algorithm. This result is

performed in Python running on a laptop Dell Latitude 7480 Intel core i5, 2.40 GHz 8GB RAM.

Example 4.1. Let H1 =R3 and H2 =R4. Operators A : R3→R3 and B : R4→R4 are defined by

Ax =

3 3 1
3 3 1
1 1 5

x1
x2
x3

 , x =

x1
x2
x3

 ∈ R3 and Bx =


1 1 1 1
1 1 1 1
1 1 3 1
1 1 1 1




x1
x2
x3
x4

 , x =


x1
x2
x3
x4

 ∈ R4

that are inverse strongly monotone operator with constant ηA = 1
7 and ηB = 1

3+
√

3
. Bounded linear

operator F : R3→R4, Fx =


1 0 2
1 0 2
0 0 −3
0 1 2


x1

x2
x3

. And T x : R3→R3, T x = 1
2 x is contractive operator

with constant τ = 1
2 . Let C and Q are defined by

C = {x ∈ R3,〈a1,x〉 ≤ b1}, with a1 =
[
−1 0 1

]>
, b1 = 2;

Q = {x ∈ R4,〈a2,x〉 ≤ b2}, with a2 =
[
1 0 1 0

]>
, b2 = 3.

ΩSVIP =
{

x =
[
t −t 0

]> ∣∣ t ∈ R : t ≥ −2
}
. The unique solution of VIP

(
IR

3−T,ΩSVIP

)
is

x∗ =
[
0 0 0

]>
. Now, choose αk = k−0.5, λ = 0.25, βk = 0.5, ρk = 0.25 and κk = 0.1, tolerance

ε = 10−3 and initial point x1 =
[
1 3 1

]>, we get
x =

[
−6.78489854×10−4 6.78489983×10−4 2.71210451×10−10

]>
.

This result archived within 11.9×10−3 seconds.
Next, we used different choices of parameters. Table 1 shown below is the performance with

different αk parameter, λ = 0.25, βk = 0.5, ρk = 0.25 and κk = 0.1.

Table1: Result with different αk

ε
αk = k−0.5 αk = k−0.8

‖x− x∗‖ time (s) k ‖x− x∗‖ time (s) k

10−3 0.96×10−3 11.9×10−3 53 0.99×10−3 63.8×10−3 632

10−6 0.99×10−6 33.9×10−3 196 0.99×10−6 857.7×10−3 10688

10−9 0.99×10−9 54.8×10−3 433 0.99×10−9 7107.3×10−3 64382

Then we changed the initial point, with the same choice of parameters, as αk = k−0.5, λ = 0.25,
βk = 0.5, ρk = 0.25 and κk = 0.1. The results are recorded in Table 2.

Table2: Result with different initial vector

ε
x1 =

[
1 1 1

]> x1 =
[
9 9 9

]>
‖x− x∗‖ time (s) k ‖x− x∗‖ time (s) k

10−3 0.78×10−3 2.9×10−3 7 0.91×10−3 3.9×10−3 11

10−6 0.93×10−6 10.9×10−3 51 0.99×10−6 13.9×10−3 98

10−9 0.97×10−9 34.9×10−3 192 0.97×10−9 41.8×10−3 297
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5. Conclusion
In this paper, we introduced a new algorithm (Algorithm 1) and a new strong convergence

theorem (Theorem 3.1) for solving the (SVIP) in a real Hilbert spaces without prior knowledge of
operators norms. We consider a numerical example to illustrate the effectiveness of the proposed
algorithm.
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