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The split variational inequality problem (SVIP) was first introduced
by Censor et al. Up to now, there is a long list of works concerning
algorithms to solve (SVIP). In this paper, we study the split
variational inequality problem in Hilbert spaces. In order to solve this
problem, we propose a self-adaptive algorithm. Our algorithm uses
dynamic step-sizes, chosen based on information of the previous step
and their strong convergence is proved. In comparison with the work
by Censor et al. (Numer. Algor., 59:301-323, 2012), the new
algorithm gives strong convergence results and does not require
information about the spectral radius of the operator. And then, we
give a numerical experiment to illustrate the performance of our
algorithm.
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Bai toan chap nhan tach
Bat dang thac bién phan
Khong gian Hilbert
Anh xa khdng gidn
Diém bt dong

Bai toan bat dang thic bién phéan tach (SVIP) dwoc nghién ciru dau
tién boi Censor va cac cong su. Dén nay, c6 rit nhidu cong trinh
nghién ctru c4c thuat toan dé giai bai toan SVIP. Trong bai béo nay,
chung t6i dé cap dén bai toén bat diang thuc bién phan tach trong
khong gian Hilbert. Dé giai bai toan, ching tdi trinh bay mot thuat
toan tu thich nghi, str dung ¢& budce dugc chon dua trén théng tin cua
cac budc lap trude do, dong thoi ching minh sy hdi tu manh cua
thuat todn. So véi cong trinh nghién ctu cua tac gia Censor (Numer.
Algor., 59:301-323, 2012), thuat toan méi cua ching tdi cho két qua
hoi tu manh va khong can st dung béan kinh phd cua toan tir. Cudi
cuing, chung t6i dua ra vi du minh hoa cho phwong phap da dé xut.
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1. Introduction

Let .77 and .74 be two real Hilbert spaces with inner product (.,.) and norm ||.||. Variational
Inequality Problem (VIP) [1], [2] is the problem of finding a point #* in a subset C of a Hilbert space
¢ such that

(Au*,u—u*y>0 Yuec, (VIP(A,C))

where A : C — ¢ is a mapping, and we denote solution set of (VIP(A,C)) by S(4 ¢).
The Split Feasibility Problem (SFP) proposed by Censor and Elfving [3] is finding a point

weC and Fu'€Q, (SFP)

where C and Q are nonempty closed convex subsets of real Hilbert spaces .74 and 743, respectively
and F : JA4 — 7% is a bounded linear operator.

In this paper we discuss a self-adaptive algorithm for solving the Split Variational Inequality
Problem which was studied by Censor et al. in [4]

find u* € S(A7C) and Fu* e S(B,Q)‘ (SVIP)

To solve the (SVIP), Censor et al. [4] presented a weak convergence result when A and B are
Na, Np-inverse strongly monotone operators on .77 and 743, respectively.

In the present article, our aim is to introduce an iterative algorithm to solve the (SVIP) by using
the viscosity approximation method [5], cyclic iterative methods [3], [6], [7] and a modification
of the CQ-algorithm [8], [9]. We prove the strong convergence of the presented algorithm under
some mild conditions. Particularly, in our method, the step size is selected in such a way that its
implementation does not need any prior information on the norm of the transfer operators.

2. Preliminaries

In this section, we introduce some mathematical symbols, definitions, and lemmas which can be
used in the proof of our main result.

Let 7 be a real Hilbert space with inner product (.,.) and norm |.|| and C be a nonempty,
closed and convex subset of 7. In what follows, we write x* — x to indicate that the sequence {x*}
converges weakly to x while x* — x indicate that the sequence {x*} converges strongly to x. It is
known that in a Hilbert space 7,

20x,y) = x4+ yI1* = x> = [Iy1* = Ixl> =+ 1y > = =yl (1)
and
2+ (1= 2)y1> = A|lx][>+ (1= A)|Iy > = A(1 = A)[lx = y]1%, (2)

forall x,y € 7 and A € R (see, for example [10, Lemma 2.13], [11]). For each x € # there exists a
mapping P : 7 — C such that ||x — Pcx|| < ||x —y|| Vx,y € C. The mapping Fc is called the metric
projection of .Z onto C.

Lemma 2.1. (see [12]) (i) Pc is a nonexpansive mapping.
(ii) Pexe C Vxe€ # and Pcx=x VxeC.
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(iii) x € A,y =Pexifandonlyify € Cand (x—y,z—y) <0 VzeC.

Definition 2.1. An operator T : 5 — 7 is called a contraction operator with the contraction
coefficient T € [0,1) if || Tx—Ty|| < t||x—y|| Vx,y€ 2.

It is easy to see that, if 7" is a contraction operator, then PcT is a contraction operator too. If
T > 0 we have 7-Lipschitz continuous operator.

Definition 2.2. Let .77 and .74 be two Hilbert spaces and let F : 77 — % be a bounded linear
operator. An operator F* : 5% — 7] with the property (Fx,y) = (x, F*y) forall x € 7] and y € 743,
is called an adjoint operator of F.

The adjoint operator of a bounded linear operator ' on a Hilbert space always exists and is
uniquely determined. Furthermore, F* is a bounded linear operator.

Definition 2.3. An operator A : 5 — . is called an n-inverse strongly monotone operator with
constant 1 > 0 if (Ax — Ay, x —y) > n||Ax — Ay||> Vx,y € 2.

It is easy to see that, if A is an n-inverse strongly monotone operator, then I — 1A is a
nonexpansive mapping for A € (0,2n].

Lemma 2.2. (see [4]) Let A : C — 7 be n-inverse strongly monotone on C and A > 0 be a constant
satisfying 0 < A < 21. Define the mapping T : C — C by taking

Tx=Pc(I” —2A)x VYxeC. (3)

Then T is nonexpansive mapping on C, furthermore, Fix(T) = S AC) IS the set of fixed points of T,
where Fix(T) := {x € C | Tx =x}.

Lemma 2.3. (see [12]) Assume that T be a nonexpansive mapping of a closed and convex subset C
of a Hilbert space F into 7. Then the mapping I’ —T is demiclosed on C; that is, whenever {xk}
is a sequence in C which weakly converges to some point u* € C and the sequence {(I”V — T )x*}
strongly converges to some y, it follows that (I” — T)u* = y.

From Lemma , if x* — u* and (I”¥ — T)x* — 0, then u* € Fix(T).

Lemma 2.4. (See [2]) Let {si} be a real sequence which does not decrease at infinity in the sense
that there exists a subsequence {sy, } such that sy, < sy, 1 Vn > 0. Define an integer sequence by
v(k) = max{ko <n<k|s,<spt1 }, k > ko. Then v(k) — oo as k — oo and for all k > ko, we have
max{sy(), Sk} < Sy(k)+1-
Lemma 2.5. (see [13]) Let {s;} be a sequence of nonnegative numbers satisfying the condition
Skr1 < (1 —by)sg + brck, k > 0, where {b} and {cy} are sequences of real numbers such that

(i) {br} C (0,1)forallk >0 and Yy | by = oo,

(ii) limsupy_,.cx < 0.

Then, limg_,c 53, = 0.
3. Main Results

In this section, we use the viscosity approximation method and a modification of the CQ—
algorithm to establish the strong convergence of the proposed algorithm for finding the solution of
the (SVIP). We consider the (SVIP) under the following conditions.
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Assumption 3.1.

(A1) A: A — J4 is nu-inverse strongly monotone on J727.

(A2) B: 5 — 6 is np-inverse strongly monotone on .743.

(A3) F : 4 — 2 be a bounded linear operator.

(Ad) T : . — S is a contraction operator with the contraction coefficient 7 € [0, 1).
(AS5) The solution set Qgyp of (SVIP) is not empty.

If A and B satisfy the properties (A1) and (A2), respectively, the solution sets S(4 ) and S o)
are closed and convex. Here, for the sake of convenience, an empty set is considered to be closed
and convex. Therefore, the solution set Qgvp of the (SVIP) is also closed and convex.

Algorithm 1

Step 0. Select the initial point x! € 74 and the sequences {04}, {Bc}, {px}, {%}, and A such
that the conditions

{og} € (0,1), oy — 0 as k — oo, and i oY = oo, (C)
k=1

0<A<2n, n=min{n4,ns}, (C2)

{ﬁk} C [aab] C (07 1)7 (C?’)

{pe} Cle.d] C(0,1), {x} C (0,K), K>0 (C4)

are satisfied. Set k := 1.
Step 1. Compute y* = Bexk + (1 — Bi) P (I71 — AA) x*.
Step 2. Compute X = Py (I’ — AB) Fy*.
Step 3. Compute v* = y* + 1. F*(z* — Fy*), where the step size 7 is defined by

|12 = Fy*2
|F* (25 = Fy") >+ r

Ye = Pk

Step 4. Compute X! = o4 Tx* 4 (1 — oy V..
Step S. Setk:=k+1 and go to Step 1.

Theorem 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Then the sequence {x}
generated by Algorithm I converges strongly to the unique solution of the VIP(I‘%ﬁl —T,Qsvip).

Proof. Since T is a contraction mapping, Pog,,, T is a contraction too. By Banach contraction
operator principle, there exists a unique point u* € Qgyip such that Po,,Tu" = u*. By Lemma
2.1(iii), we obtain u* is the unique solution to the VIP(I”i — T, Qgy1p). Since u* € Qgyip, u* € Sa.c)
and Fu* € S(B,Q)-

Letu € Qgyip, u € S(A,B). Since Lemma 2.2, u = P¢ (1‘%{‘ — lA)u. From Step 1 in Algorithm 1,
the nonexpansive property of Pr (ijl — 7LA) (see Lemma 2.2), and (2), we have that
, 2
I > = | B = )+ (1 = ) [Pe (171 = 2A)s* = Pe(17 — 24 )] |
2
< Bl = ul® + (1= Bl = ul® = Be(1 = Bo) [ = Pe (171 — AA) ||
/ 2
= |l = ul|* = Be(1 = o) || = Pc (17 — A4) || (5)

< ok —u|. (6)
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It follows from Step 3 in Algorithm 1, the property of adjoint operator F*, and (1) that
IV =l = [+ e (& = F)
= [y = ul?+ 2| F* (& = FY") || + 2% 5 — e, F* (2 = FyY))
— |y — ]+ R||F* (= Fy) || + 2% (Fy* = Fu, 2 — FyF)
— Hyk—qu—i-}’,?HF*(zk—Fyk)Hz-l-}’k<sz—Fu||2— [Py — Fu|? - sz—Fkaz).
Since u € Qsyip, Fu € S(p g). It follows from Lemma 2.2 that Fu = Py (1”2 — AB) Fu. From Steps 2

and 3 in Algorithm 1, the nonexpansive property of Pp (I _ /IB) , (4), (C4), and the last inequality,
we obtain

I — )] = [ —ul?+ 7| F* (& = PN ||
+WUMﬂﬁﬁkoFffﬂxF@flmeffWW“JMW—MffFfW)
éHf—wm”+%HF%%—4wﬂH?+n(ka—Fﬂf—HFf—JwH?—Wk—FfH?

= |y = ul? + || F* (& = Fy") || — w||&* = Fy*|?

! : )
< |IvE — 2+ 2 HZ Y F* k_F k +x) —
> Hy MH P (HF*(Zk—Fyk)||2+Kk)2 (H (Z Yy )H k) pkHF*(Zk—Fyk)H2+Kk
)
Il — (1 — 2 Y 7
L e Py ™
< Iy —ull?. (8)

It follows from the convexity of the norm function ||.|| on .7#], the contraction property of 7' with the
contraction coefficient 7 € [0, 1), (6), (8), and Step 4 in Algorithm 1 that

! =l = [fone (7 —10) + (1= 06) (v )| < 0t (|7 = T || 7= ]|} + (1 = o) [ — ]

< ol —u| + o || Tu — w] + (1 — o) || — ]

= [1—(1—T)O£k]||xk—u||+(1 —T)akw
T Tu—u
SmaX{ka—uH 7= H} -Smax{”xo—uH,Hlu_TH}.

This implies that the sequence {x*} is bounded. Since Pc and Py are nonexpansive mappings and F
is the bounded linear operator, we also have the sequences {y}, {z*}, and {1} are bounded.

Now we claim that lim,, . ||x* —u*|| = 0, where u* is the unique solution of the VIP(I AT, Qsvip),
that is, u* = Pqog,,, Tu*. Indeed, from the convexity of ||. |2, Step 4 in Algorithm 1, (5), (7) with u
replaced by u*, and the condition (C1), we get

I — |2 = (o (T — ) + (1 — 0) (F — ) ||* < || T — ||+ (1 = o) [V — * |2

k _ pyk

SakHTxk_“*HszHyk—u*llz—pk(l—pk) HZ y H
[F(k = FyO)[|” + x

|5 = Fyt||

< o || T = ||P + o — |2 = i (1 — i)

— Be(1 = Bo) || ¥ — P (17 — 2.4) |,
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Hence,

4
B[ — P17 — 24y
“F*(Zk_Fyk)“2+ak+ﬁk(l ﬁk)H PC(I A) H

< (I =P = o = |2) 4 e[ = (9)

Next, from Step 4 in Algorithm 1 and the contraction property of 7 with the contraction coefficient
7 € [0,1), we have that

K w2 = (og(Tx* —u) 4 (1 — o) (VF — ), 2 —u)

= (1 — o) (VF = XX — ) o (T — e T — )

< 1— oy
- 2
L—og v 2 I TP AR ko2 k+1 w2 x _ox k1w
o (I = 2 et =) T (el P o =) 4 T ).

(Hvk — u*H2 + kaH — u*H2> + (xk<Txk — Tu* X — u*y+ oy (Tu" — u X — u*)

IN

This implies that |[x**! —u*||> < (1 — og)||VF — w*||> + ogT||x* — u*||® + 204 (Tu* — u* K1 —u*).
From (6), (8) with u replaced by u*, and the last inequality, we obtain

ka+1 _M*HZ < [1 _ (1 —T)(Xk] \W‘—u*\|2+2ak(Tu* _u*,xk+l _u*>_ (10)

We consider two cases.

Case 1. There exists an integer ko > 0 such that |[x**! — u*|| < ||xk — u*|| for all k > k.

Then, limy_,. ||x* — u*|| exists. From the boundedness of the sequence {Tx*}, the conditions (C1),
(C3), and (C4), it follows from (9) that

]}ijgo\\xk—Pc(lﬂ—AA)xk\\ =0, (11)

and
lim ||Z¥ — Fyk|| = 0. (12)
k—yo0

From Step 1 in Algorithm 1 and (C3), we get

lim ||x* —y¥|| = (1 — By) lim [|o% — Pc (1771 — 24) || = 0. (13)
k—yo0 k—roo
Hence,
Jim || [171 = Pc (17 = 24) || = 0. (14)
—»00

From Step 2 in Algorithm 1 and (12), we obtain

lim || [172 — Py (17 — AB) | Fy*|| = 0. (15)

k—yo0
From Step 3 in Algorithm 1, the property of adjoint operator F*, and (12), we obtain
IV =y = wlF* (= FY)| =0 as k— oo (16)
It follows from (13) and (16) that

[ =V | =0 as k— oo (17)
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Using the boundedness of {1*} and {Tx*}, Step 4 in Algorithm 1, and the condition (C1), we also
have ||x**1 —vk|| = oy ||Tx* —vK|| = 0 as k — co. When combined with (17), this implies that

[ — x| =0 as k— oo (18)

Now we show that limsup,_,.. (Tu* — u*,x**! —u*) < 0. Indeed, suppose that {x*"} is a subsequence
of {x} such that
limsup(Tu* —u*, x* —u*) = lLim (Tu* —u*,x" —u*). (19)

k—>o0 ki —»oo

Since {x*"} is bounded, there exists a subsequence {x* } of {x*"} which converges weakly to some
point u'. Without loss of generality, we may assume that x* — ¥, We will prove that u’ € Qgyip.
Indeed, from (14), Lemmas 2.2 and 2.3, we obtain ut e S(A,C)~ Moreover, since F is a bounded
linear operator, F. o —~ Fuyt, Using (17), Lemmas 2.2 and 2.3, we also obtain F ut e S(B,Q)- Hence,
u' € Qgyip. So, from u* = PogpTu*, (19), and Lemma 2.1(iii) we deduce that

limsup(Tu* —u*, " —u*) = (Tu* —u*,u" —u*) <0,
k—poo

which combined with (18) gives

limsup(Tu* — u*, X! —u*) <0. (20)
k—ro0

Now, the inequality (10) can be rewritten in the form ||x**! —u*||? < (1 — by)||x* — w*||? + bycy,
k > 0, where by = (1 — 7)oy and ¢, = 1%T<Tu* —u*, x**! — u*). Since the condition (C1) and
7€ 0,1), {bx} C (0,1) and Y5> | by = eo. Consequently, from 7 € [0,1) and (20), we have that
limsup, ... cx < 0. Finally, by Lemma 2.5, lim; .. ||x* — u*|| = 0.

Case 2. There exists a subsequence {k,} of {k} such that ||x —u*|| < ||x**! —u*|| for all n > 0.

Hence, by Lemma 2.4, there exists an integer, nondecreasing sequence {v(k)} for k > k¢ (for some
ko large enough) such that v (k) — oo as k — oo,

Y0 i) < WO | and k- < O (1)
for each k > 0. From (10) with k replaced by v(k), we have
0 < [0+ — i | — 0 — |2 < 2aty g (T — X" OF ).
Since o, () — 0 and the boundedness of {xV®}, we conclude that

lim (|lx"©OF — |2 — [|x"® —u*|?) = 0. (22)

k—ro0

By a similar argument to Case 1, we obtain

lim || [170 — Pe (171 = 24) |20 =0 and  lim [|[17% — Po (17 — 2.B) | Fy* || = 0.

Also we get [x" O+ — |2 < [1— (1 - T) Oty (k)| V) — |2 +- 200 (1) (Tu* — u xR gy
where limsup(7Tu* — u xV R+ u*) < 0. Since the first inequality in (21) and @) > 0, we have
that (1 —n?;\’\xv(k) —u*|)? < 2(Tuw* — u , xV R+ — ),

Thus, from limsup, ... (Tu* —u*,x"®O+! —y*) <0and 7 € [0, 1), we get klglolo [V ®) — ¥ |2 = 0.
This together with (22) implies that ]}glolo [[xV®)+1 — #||2 = 0. Which together with the second

inequality in (21) implies that /}im [|x* — u*|| = 0. This completes the proof. O
— 00
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4. Numerical Results

We give a numerical experiment to illustrate the performance of our algorithm. This result is
performed in Python running on a laptop Dell Latitude 7480 Intel core i5, 2.40 GHz 8GB RAM.

Example 4.1. Let 74 = R3 and .75 = R*. Operators A : R? — R3 and B : R* — R* are defined by

SRINEE L ] e
Ax=1{3 3 1| |x|,x=|xn| R’ and Bx= 2 , X = 2l er?
11 sl | . 1 1 3 1| [x3 X3

3 3 111 1] [x x4
that are inverse strongly monotone operator with constant 1y = % and ng = ﬁ Bounded linear
10 2 o
3 4 1o 2" 3 3 1, :
operator F : R° — R*, Fx= 00 —3 X2 . And Tx: R° — R’, Tx = 7x is contractive operator
01 2"

with constant T = % Let C and Q are defined by

C={xeR® (a1,x) <bi}, witha; = [-1 0 1], b =2;
Q= {x€R* (a,x) <by}, withay=[1 0 1 0], by=3.

Qsvip = {x = [t —t O]T ‘ teR:t> —2}. The unique solution of VIP (IR3 -7, Qs\np) is

x* = [0 0 O}T . Now, choose oy = k=93, 4 =0.25, B, = 0.5, pr = 0.25 and ; = 0.1, tolerance
€ = 1073 and initial point x! = [1 3 l]T, we get
x = [—6.78489854 x 107+ 6.78489983 x 104 2.71210451 x 1019] ",

This result archived within 11.9 x 10~3 seconds.

Next, we used different choices of parameters. Table 1 shown below is the performance with
different oy parameter, A = 0.25, B = 0.5, pr = 0.25 and x; = 0.1.

Tablel: Result with different oy

o = k=03 o = k038

) [|lx —x*|] time (s) k [|lx —x*|] time (s) k
1072 [ 096x1072 | 11.9x1073 | 53 [ 0.99x1073 | 63.8x 1073 632
1076 | 0.99x107% | 33.9x 1073 | 196 | 0.99 x 1076 | 857.7x 1073 | 10688
107 1 0.99x 1072 | 54.8 x 1073 | 433 | 0.99 x 1072 | 7107.3 x 1073 | 64382

Then we changed the initial point, with the same choice of parameters, as o = k%>, 1 = 0.25,
Br = 0.5, pr = 0.25 and k; = 0.1. The results are recorded in Table 2.

Table2: Result with different initial vector

A= 1 1)’ = 9 9"
) [l — x*|] time (s) k [l — x*|] time (s) k
1073 ] 0.78x1073 | 29x1073 | 7 [091x1073 | 3.9x1073 | 11
107° [ 0.93x107% | 10.9x 1073 | 51 | 0.99x107® | 13.9x 1073 | 98
107 | 0.97 x107° | 349x 1073 | 192 | 0.97 x 1077 | 41.8 x 1073 | 297
http://jst.tnu.edu.vn 63 Email: jst@tnu.edu.vn



TNU Journal of Science and Technology 227(07): 56 - 64

5. Conclusion

In this paper, we introduced a new algorithm (Algorithm 1) and a new strong convergence
theorem (Theorem 3.1) for solving the (SVIP) in a real Hilbert spaces without prior knowledge of
operators norms. We consider a numerical example to illustrate the effectiveness of the proposed
algorithm.
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