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1 Introduction

Late in the 19th century, Lyapunov published his profound thesis, which gave
birth to the qualitative theory of differential equation. In the thesis, Lyapunov dealt
with the long-term behavior of a system of differential equations. He had proposed
two methods for studying the systems: Lyapunov exponent method, and the method
of Lyapunov functions. Since then, the methods of Lyapunov have been widely used
and serve as key tools in investigating the (conditional) stability of the solutions of
systems of differential equations. Moreover, developing the method of Lyapunov ex-
ponents many researchers introduced various kinds of exponents as further tools for
the investigation of qualitative properties of systems of differential equations. The
Lyapunov exponents are estimated from above by the central exponents, were intro-
duced in 1957 [1], which are again Lyapunov exponents, only not of the solutions
themselves, but of functions obtained from the solutions of the system by applying
to these some averaging procedure. A consequence of this procedure is that the cen-
tral exponents have some properties which the Lyapunov exponents of the solutions
themselves do not have. For instance, the negativity of the highest Lyapunov expo-
nent of the linear system x′ = A(t)x does not always imply the stability of the trivial
solution of the system x′ = A(t)x + g(x, t). But the negativity of the upper central
exponent of the first system does imply the stability of the trivial solution of the
second system.

The theory of Lyapunov exponents applied to the framework of the ergodic theory
leads to a whole new field of research: the theory of random dynamical systems [3]. In
[4] has considered the Lyapunov exponents and central exponents of nonautonomous
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linear stochastic differential equations (SDE) and proved that they are nonrandom.
The results that author got based on the tools of the classical theory of Lyapunov
developed by Millionshchikov [10], [11] and the theory of two-parameter stochastic
flows by Kunita [13]. The central exponents is an upper bound of the Lyapunov
exponents.

On the other hand, several technical problems, e.g. in the context of computer-
aided design of electronic circuit, the modeling of circuits under the influence of
electronic noise leads to the problem of investigating the stochastic differential alge-
braic equations (SDAE). The class of SDAE of index 1, plays an important role in
models with an algebraic component, as e.g. in modified analysis nodal techniques
from electrical engineering under the influence of inner electrical noise (see [7]). This
comes from the fact that the technique of modified analysis nodal without noise yields
a DAE of index 1 if and only if the network contains neither CV-loops nor LI-cutsets
(see [12]) and under some additional conditions, the noise sources do not appear in
the constraints (see [9], [14], [15]). For a SDAE of index 1 under certain conditions, we
are able to transform it into a system consisting of a SDE and an algebraic equations
(see [5]). So that we may use methods and results of the theory of SDE to them.
In [5] and [7], the authors introduced the concept of Lyapunov exponents, Lyapunov
spectrum and Lyapunov regularity of a SDAE of index 1.

The paper is organized as follows: in the next section we recall some basic notions
about two-parameter stochastic flows, the Lyapunov exponents and central exponents
of linear SDE; The induced two-parameter stochastic flows, Lyapunov exponents and
the Lyapunov spectrum of SDAE of index 1. In Section 3 we introduce the concept
of central exponent of linear SDAE of index 1 and prove that it is nonrandom and
compare with top Lyapunov exponent.

The following notations are used throughout the paper: Gk is the Grassmannian
manifold of all k-dimensional subspaces of Rn; U∗ is the subset of all nonvanishing
vectors of a linear subspace U ⊂ Rn; ‖.‖ is the standard both Euclidean norm on Rn

and operator norm, T|U denotes the restriction of the operator T on U with operator

norm ‖T|U‖ = supx∈U∗
‖T(x)‖
‖x‖ .

2 Preliminary

2.1 Stochastic differential equation and two-parameter stochas-
tic flow

Consider the nonautonomous linear SDE

dx(t) = F0(t)x(t)dt+
d∑

j=1

Fj(t)x(t)dW j
t , t ∈ R+, (2.1)
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where the matrix-valued functions Fj : R+ → Rn×n, j = 0, . . . , d, are continuous and
(Wt) denotes an d-dimensional Wiener process given on a probability space (Ω, F ,
P) (see [2]).

Kunita [13] has introduced a concept of two-parameter stochastic flows which
is a dynamic approach to the theory of SDEs since under mild conditions an SDE
generates a two-parameter stochastic flow Φs,t(ω) of linear operators of Rn and the
solution of (2.1) satisfying initial value condition x(0) = x0, is a stochastic process
given by the formula x(t) = Φs,t(ω)x0. Conversely, under a reasonable condition a
two-parameter flow of diffeomorphisms of Rn generates an SDE. Therefore, there
is a one-to-one correspondence between smooth SDEs and smooth two-parameter
stochastic flows. Now, we recall the concept of two-parameter stochastic flow on a
probability space (Ω, F , P) with state space Rn. A two-parameter stochastic flow of
diffeomorphisms of Rn is a family of continuous maps {Φs,t(ω) : ω ∈ Ω, s, t ∈ R+}
which satisfies the following properties for almost surely

(i) Φs,t(ω) = Φu,t ◦Φs,u(ω) holds for all s, t, u ∈ R+, where ◦ denotes the composi-
tion of maps;

(ii) Φs,s(ω) is the identity map for all s ∈ R+;

(iii) the map Φs,t(ω) : Rn 7→ Rn is an onto homeomorphism for all s, t ∈ R+;

(iv) Φs,t(ω)x is differentiable with respect to x ∈ Rn for all s, t ∈ R+ and the
derivative is continuous in s, t, x.

We shall assume that the properties (i)− (iv) above are satisfied for all ω ∈ Ω. Note
that fixing an ω ∈ Ω the two-parameter stochastic flow Φs,t(ω) is an analogue of
the Cauchy operator of a linear system of differential equations. Millionshchikov [10],
[11] had discovered that there are several equivalent definitions for the Lyapunov
spectrum. Nguyen Dinh Cong used following definition [4]: for a given two-parameter
stochastic flow Φs,t(ω) of linear operator of Rn, the extended-real numbers

λk(ω) := inf
V ∈Gn−k+1

sup
x∈V

lim sup
t→∞

1

t
log ‖Φ0,t(ω)x‖, k = 1, ..., n,

are called Lyapunov exponents of the flow Φs,t(ω). The set consisting of the Lyapunov
exponents λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λn(ω) is called Lyapunov spectrum of the flow
Φs,t(ω). The extended-real numbers

Ωk(ω) := inf
V ∈Gn−k+1

inf
T∈R+

lim sup
m→∞

1

mT

m−1∑
i=0

log ‖ΦiT,(i+1)T (ω)|Φ0,iT (ω)V ‖, k = 1, 2, . . . , n

are called the central exponents of the two-parameter flow Φs,t(ω). The Lyapunov
exponents and Lyapunov spectrum, central exponents of (2.1) are, by definition,
those of two-parameter stochastic flow Φs,t(ω) generated by (2.1). It was proved that
Lyapunov exponents, central exponents of (2.1) are nonrandom (see [4], [8]).
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2.2 Lyapunov exponents of stochastic differential algebraic
equation

Let us consider the linear SDAE of index 1

A(t)dx(t) +B(t)x(t)dt+
d∑

j=1

Bj(t)x(t)dW j
t = 0, t ∈ R+, (2.2)

where, matrix-valued functions A,B,Bj : R+ → Rn×n are continuous and (Wt) de-
notes an d-dimensional Wiener process.

We assume that A(t) is singular with rankA(t) = r < n and smooth kernel
kerA(t), i.e. there exists a smooth projector Q ∈ C1(R+,Rn×n) onto kerA(t). Recall
that the SDAE (2.2) is said to be of index 1 [5], if

(i) the deterministic part of (2.2) is a DAE of index 1, i.e. A1(t) := A(t)+B0(t)Q(t)
is nonsingular on R+, where B0(t) := B(t)− A(t)P ′(t), P (t) := I −Q(t);

(ii) Bj(t)x ⊂ A(t) for all (t, x) ∈ R+× and j = 1, . . . , d.

If the SDAE (2.2) is of index 1, then the inherent SDE of (2.2) (under P ) is (see [5],
[6])

du(t) = (P ′ − PA−1
1 B0)u(t)dt+

d∑
j=1

Fj(t)u(t)dW j
t , t ∈ R+, (2.3)

where Fj(t) := −A−1
1 (t)Bj(t)Pcan(t), j = 1, . . . , d. Denote Qcan := QA−1

1 B0 and
Pcan := I − Qcan. Note that Qcan is a projector onto kerA which is independent of
the choice the projector Q.

Suppose that Φs,t(ω) is a two-parameter stochastic flow generated by (2.3). Then,
x(t) = Pcan(t)Φs,t(ω)P (s)x0, x0 ∈ Rn, is the solution of (2.2) satisfying the initial con-
dition x(s)− x0 ∈ kerA(s), t ≥ s ≥ 0. As in [6] we call Ψs,t(ω) := Pcan(t)Φs,t(ω)P (s)
the induced two-parameter flow of (2.2). For any x ∈ Rn, s, t ∈ R+, we have

Ψ0,t(ω)x = Pcan(t)Φ0,t(ω)P (0)x

= Pcan(t)Φs,t(ω)Φ0,s(ω)P (0)x

= Ψs,t(ω)Ψ0,s(ω)x. (2.4)

Following the ideas in references [4], [11], the Lyapunov exponents of an SDAE (2.2)
of index 1 are defined by the formula (see [6])

λk(ω) := inf
V ∈Gn−k+1

sup
x∈V

lim sup
t→∞

1

t
log ‖Ψ0,t(ω)x‖, k = 1, . . . , r. (2.5)

The set consisting of the Lyapunov exponents λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λr(ω) is
called Lyapunov spectrum of (2.2). Lyapunov exponents are measurable and are non-
random.
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3 Upper central exponent of linear stochastic dif-

ferential algebraic equation of index 1

In this section we consider nonautonomous linear SDAE (2.2) of index 1. Let Ψs,t(ω) =
Pcan(t)Φs,t(ω)P (s) be the induced two-parameter flow of (2.2), where, Φs,t(ω) is a
two-parameter stochastic flow generated by inherent SDE (2.3).

Using the approach of references [4], [6], we introduce the notion of upper central
exponent for (2.2).

Definition 3.1. Let Ψs,t(ω) be the induced two-parameter flow of (2.2). Then

Λ(ω) := inf
T∈R+

lim sup
m∈N
m→∞

1

mT

m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖ (3.1)

is called the upper central exponent of the two-parameter flow Ψs,t(ω). The upper
central exponent of SDAE (2.2) is, by definition, the upper central exponent of the
induced two-parameter stochastic flow generated by the SDAE.

Theorem 3.2. The upper central exponent Λ(ω) of SDAE (2.2) is always greater
than or equal to the top Lyapunov exponent λ1(ω).

Note that already in the deterministic case the above relation can be strict for an
example of a two-dimensional deterministic system (see [1]).

Proof. Acording to (2.5), we have the top Lyapunov exponent of SDAE (2.2)

λ1(ω) = sup
x∈Rn

lim sup
t→∞

1

t
log ‖Ψ0,t(ω)x‖.

It can be computed via a discrete-time interpolation of the flow: for any T > 0,

λ1(ω) = sup
x∈Rn

lim sup
m∈N∗
m→∞

1

mT
log ‖Ψ0,mT (ω)x‖. (3.2)

For any T > 0, m ∈ N∗ and x ∈ Rn, we have

‖Ψ0,mT (ω)x‖ (2.4)
= ‖Ψ(m−1)T,mT (ω)Ψ0,(m−1)T (ω)x‖
≤ ‖Ψ(m−1)T,mT (ω)|Ψ0,(m−1)T (ω)Rn‖‖Ψ0,(m−1)T (ω)x‖
≤ ‖Ψ(m−1)T,mT (ω)|Ψ0,(m−1)T (ω)Rn‖ . . . ‖Ψ0,T (ω)|Rn‖‖x‖.

Therefore, for any T > 0 and m ∈ N∗

1

mT
log ‖Ψ0,mT (ω)x‖ ≤ 1

mT

m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖+ log ‖x‖.
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From this inequality and (3.2), we get for any fixed T > 0,

λ1(ω) = sup
x∈Rn

lim sup
m∈N
m→∞

1

mT
log ‖Ψ0,mT (ω)x‖ ≤ lim sup

m∈N
m→∞

1

mT

m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖.

Consequently,

λ1(ω) ≤ inf
T>0

lim sup
m∈N
m→∞

1

mT

m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖ (3.1)
= Λ(ω).

The theorem is proved.

Theorem 3.3. The upper central exponent Λ(ω) of SDAE (2.2) is not random.

Proof. For N ∈ N∗, and T > 0, denote ξN :=
∑N

i=0 log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖. Then
the random variable ξN has finite second moment. This implies

lim sup
m→∞

1

mT
ξN = 0, almots surely.

Therefore, for any N ∈ N∗

Λ(ω) = inf
T>0

lim sup
m∈N
m→∞

1

mT

(
ξN +

m−1∑
i=N+1

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖
)

= inf
T>0

lim sup
m∈N
m→∞

1

mT

m−1∑
i=N+1

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖

= inf
T>0

lim sup
m∈N
m→∞

1

mT

m−1∑
i=N+1

log ‖ΨiT,(i+1)T (ω)|ΨNT,iT (Φ0,NT (ω)P (0)Rn)‖

= inf
T>0

lim sup
m∈N
m→∞

1

mT

m−1∑
i=N+1

log ‖ΨiT,(i+1)T (ω)|ΨNT,iT (ω)Rn‖.

Now, for N ∈ N∗, T > 0, put

f(T,N, ω) := lim sup
m∈N
m→∞

1

mT

m−1∑
i=N+1

log ‖ΨiT,(i+1)T (ω)|ΨNT,iT (ω)Rn‖.

Similar to [8], we have

inf
T>0

f(T,N, ω) = inf
T∈N∗

f(T,N, ω).
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Denote F t
s := σ(Wu−Ws, 0 ≤ s ≤ u ≤ t). Note that Ft = F t

0, where Ft := σ(Ws, 0 ≤
s ≤ t), t ∈ R+, is the natural filtration of Brownian motion (Wt)t≥0. Then, f(T,N, ω)
is F∞NT -measurable, since Ψs,t(ω) = Pcan(t)Φs,t(ω)P (s), t > s ≥ 0, is F t

s-measurable.
Therefore, for any N ∈ N∗ the random variable Λ(ω) is measurable with respect
to the σ-algebra

⋂
T∈N∗

F∞NT . Hence Λ(ω) is measurable with respect to the tail σ-

algebra
⋂

N∈N∗

⋂
T∈N∗

F∞NT . Since Brownian motion has independent increments, the tail

σ-algebra
⋂

N∈N∗

⋂
T∈N∗

F∞NT is trivial by Kolmogorov’s zero-one law. Consequently, the

random variable Λ(ω) is degenerate, i.e., nonrandom. The theorem is proved.

Theorem 3.4. Let (2.2) be an SDAE of index 1 with coefficients A(t), B(t), A−1
1 ,

P ′(t), Bi(t), i = 1, ..., d are bounded. Then the central exponent Λ(ω) of SDAE (2.2)
is smaller than or equal to the central exponent of the corresponding inherent SDE
(2.3).

Proof. Let Φs,t(ω) be the two-parameter stochastic flow of the inherent linear SDE
(2.3) and Ψs,t(ω) = Pcan(t)Φs,t(ω)P (s) is the induced two-parameter flow of (2.2).
For any t ≥ s ≥ 0, we have

Ψs,t(ω) = Pcan(t)Φs,t(ω)P (s).

Hence,
‖Ψs,t(ω)|Ψ0,s(ω)Rn‖ ≤ ‖Ψs,t(ω)‖ ≤ ‖Pcan(t)‖‖Φs,t(ω)‖‖P (s)‖.

Consequently,

log ‖Ψs,t(ω)|Ψ0,s(ω)Rn‖ ≤ log ‖Pcan(t)‖+ log ‖Φs,t(ω)‖+ log ‖P (s)‖.

This implies that for any T > 0,m ∈ N∗
m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖ ≤ m(log ‖Pcan(t)‖+log ‖P (s)‖)+
m−1∑
i=0

log ‖ΦiT,(i+1)T (ω)‖.

From the condition on bounded of Pcan, P and the relations P = A−1
1 A, Q = I − P ,

Pcan = I −QA−1
1 (B − AP ′) it follows that

inf
T∈R+

lim sup
m∈N∗
m→∞

1

mT

m−1∑
i=0

log ‖ΨiT,(i+1)T (ω)|Ψ0,iT (ω)Rn‖ ≤ inf
T∈R+

lim sup
m∈N∗
m→∞

1

mT

m−1∑
i=0

log ‖ΦiT,(i+1)T (ω)‖.

The limit in the right hand side of this inequality is the upper central exponent of
SDE (2.3) and the limit in the left hand side is the upper central exponent of SDAE
(2.2). The theorem is proved.
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TÓM TẮT

SỐ MŨ TRUNG TÂM TRÊN CỦA PHƯƠNG TRÌNH VI PHÂN
ĐẠI SỐ NGẪU NHIÊN TUYẾN TÍNH CHỈ SỐ 1

Nguyễn Thị Thế
Khoa Toán, Trường Đại học Vinh, Việt Nam

Ngày nhận bài 12/10/2022, ngày nhận đăng 21/11/2022

Bài báo này chúng tôi giới thiệu khái niệm số mũ trung tâm trên cho phương
trình vi phân đại số tuyến tính chỉ số 1. Chúng tôi chứng minh rằng đối với phương
trình vi phân đại số ngẫu nhiên tuyến tính chỉ số 1 thì số mũ trung tâm trên là không
ngẫu nhiên và lớn hơn hoặc bằng số mũ Lyapunov lớn nhất.

Từ khóa: Số mũ Lyapunov; số mũ trung tâm, Phương trình vi phân ngẫu nhiên;
Phương trình vi phân đại số ngẫu nhiên; Dòng ngẫu nhiên hai tham số.
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