# TỔNG HỢP. CẦU TRÚC TINH THỂ VÀ TÍNH CHẤT QUANG CỦA BỘT HUÌNH QUANG AI $_2O_3$ ĐỒNG PHA TẠP Cr $^3+$ , Mg $^2+$

SYNTHESIS, CRYSTAL STRUCTURE AND PHOTOLUMINESCENCE PROPERTIES OF Cr^3+, Mg^2+ CO-DOPED  $\alpha$ -Al\_2O\_3 PHOSPHOR

# Nguyễn Văn Quang

Khoa Hóa học, Trường ĐHSP Hà Nội 2

Đến Tòa soạn: 18/3/2021

### **SUMMARY**

In this study, deep-red emitting  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: (Cr<sup>3+</sup>,Mg<sup>2+</sup>) phosphor was synthesized by the solgel method. The effects of Mg<sup>2+</sup>concentration on structure and luminescence properties of the obtained phosphors were investigated in detail. XRD patterns analysis demonstrates that the crystallinity structure of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: (Cr<sup>3+</sup>,Mg<sup>2+</sup>) phosphor belongs to hexagonal with space group R<sub>3</sub>C. The photoluminescence spectrum (PL) of the obtained phosphor which was well excited by the excitation of 397 nm or 560 nm shows a narrow-band emission in the deep-red region peaking at 693 nm, having a great potential in the plan-growth lighting. Also, the PL spectra of received product is in a strong dependence on the concentration of Mg<sup>2+</sup> which could significantly improve the PL intensity of the  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>:Cr<sup>3+</sup> phosphor. It is shown that the highest intensity PL is obtained at 1.5 %mol. Additionally, the chromatic coordinates of all samples are investigated to verify about application capability of the phosphor.

**Từ khóa:**  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>:(Cr<sup>3+</sup>, Mg<sup>2+</sup>), sự phát quang, bột huỳnh quang phát xạ đỏ sâu, ánh sáng cho cây trồng.

## . Giới thiệu

Hiện nay, chiếu sáng rắn trên cơ sở các đèn LED được các nhà khoa học quan tâm bởi những ưu điểm nổi bật của chúng như độ bền cao, tiết kiệm năng lượng, không gây ô nhiễm môi trường và đặc biệt cho độ ổn định màu và chỉ số hoàn màu cao [1][2][3][4][5]. Để chế tạo các loại đèn LED thông thường có thể sử dụng phương pháp sẽ phủ lớp bột huỳnh quang phát xạ ở các vùng khác nhau lên các chip LED phù hợp. Bột huỳnh quang hiện nay được chế tạo bằng cách pha tạp các ion kim loại chuyển tiếp hoặc kim loại đất hiếm vào các mạng nền khác nhau. Trong số các mạng nền hiện nay được quan tâm nghiên cứu,  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> là oxit trong suốt, có độ ben lý - hóa học cao được ứng dụng nhiều trong nhiều lĩnh vực như: Năng lượng, kỹ thuật điện, công nghiệp bán dẫn, thiết bị điện tử, viễn thong, quang học, thiết bị laze...[6] Trong lĩnh vực quang học,  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> là chất nền có thể pha tạp nhiều ion kim loại cho cường độ phát quang khá mạnh và mạng nền này không gây độc hại đến môi trường [7][8][9][10]. Cac ion phát quang gồm Mn<sup>4+</sup>, Cr<sup>3+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Eu<sup>2+</sup>, Eu<sup>3+</sup>, Ce<sup>3+</sup>...[7][9][10] [11][12][13][14][15]. Trong đó, ion Cr<sup>3+</sup> cho phát xạ mạnh vùng đỏ và đỏ xa rất phù hợp sự hấp thụ diệp lục của cây trồng [16][17]. Trong báo cáo này, chúng tôi chế tạo vật liệu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha tạp Cr<sup>3+</sup>,Mg<sup>2+</sup> cho phát xạ mạnh vùng đỏ đậm và đạt bước sóng cực đại 693 nm khi kích thích ở bước sóng 397 nm hoặc 560 nm. Cấu trúc tinh thể, hình thái bề mặt và tính chất quang của vật liệu  $\alpha$ -Al $_2O_3$ đồng pha tạp Cr<sup>3+</sup>,Mg<sup>2+</sup> được nghiên cứu chỉ tiết bằng phương pháp giản đồ nhiễu xạ tia X, phương pháp hiển vi điện tử quét phát xạ trường FESEM, Phổ huỳnh quang (PL) và phổ kích thích huỳnh quang (PLE).

## 2. Thực nghiệm và phương pháp nghiên cứu

2.1. Quy trình tổng hợp bột  $Al_2O_3$ : (Cr<sup>3+</sup>, Mg<sup>2+</sup>)

Vật liệu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha tạp Cr<sup>3+</sup>, Mg<sup>2+</sup> được tổng hợp bằng phương pháp sol-gel kết hợp với thiêu kết ở nhiệt độ 1500 <sup>0</sup>C trong môi trường không khí sử dụng các tiền chất ban đầu gồm  $AI(NO_3)_3.9H_2O$ ,  $Cr(NO_3)_3.9H_2O$ , Mg(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O và axit citric. Quy trình tổng hợp bột  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha tạp Cr<sup>3+</sup>, Mg<sup>2∓</sup> bao gồm các bước sau: Đầu tiên, hòa tan các Cr(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O,  $AI(NO_3)_3.9H_2O_7$ muối Mg(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O và axit citric trong 100 ml nược cát hai lần bằng máy khuấy từ ở nhiệt độ phòng để tạo thành sol. Tiếp theo, nâng nhiệt độ lên 120°C và tiếp tục khuấy trong 5h tao thành gel ướt. Thiêu kết gel ướt ở 200°C trong 6h thu được gel khô. Cuối cùng, thiêu kết gel khô không khí tại 1500°C trong 5h trong thu được vật liệu Al2O3 đồng pha tạp Cr<sup>3+</sup>, Mg<sup>2+</sup>.

# 2.2. Phương pháp nghiên cứu

Để nghiên tính chất của vật liệu. Chúng tôi khảo sát hình ảnh bề mặt và kích thước hạt của vật liệu bằng phương pháp hiển vi điện tử quét phát xạ trường (FESEM). Cấu trúc tinh thể được nghiên cứu bằng giản đồ nhiễu xạ tia X (XRD)- sử dụng thiết bị Rigaku D/MAX-2500/PC với nguồn phát tia X Cu K<sub>Q</sub> ( $\lambda = 0,154$  nm). Phổ huỳnh quang (PL) và kích thích huỳnh quang (PLE) của vật liệu được phân tích dựa trên hệ thiết bị quang phổ Nanolog (Horiba Jobin Yvon) với bước sóng kích thích của đèn Xenon 450W. Tất cả các mẫu được đo ở nhiệt độ phòng

### 3. Kết quả và thảo luận

# 3.1. Hình thái bề mặt vật liệu

Ánh FESEM của bột huỳnh quang α-Al<sub>2</sub>O<sub>3</sub>:(Cr<sup>3+</sup>0,5%; Mg<sup>2+</sup>1,5%) chế tạo bằng phương pháp sol-gel kết hợp với thiêu kết nhiệt ở 1500 °C được trình bày trên hình 1. Có thể thấy rằng bột huỳnh quang thu được có kích thước từ vài chục đến vài trăm nanomét và phân bố không đồng nhất.



**Hình 1.** Hình thái bề mặt vật liệu α-Al<sub>2</sub>O<sub>3</sub>: Cr<sup>3+</sup>0.5%,Mg<sup>2+</sup>1.5% thiêu kết 1500°C phóng đại 20000 (a) và phóng đại 50000 lần (b)

# 3.2. Giản đồ nhiễu xạ tia X

Hình 2 là giản đồ nhiễu xạ tia X của bột huỳnh quang  $Al_2O_3$ : (0,5% $Cr^{3+}$ , x% $Mg^{2+}$ ) với các nồng độ  $Mg^{2+}$  khác nhau: x = 0,5% (a); x =1% (b); x = 1,5% (c) và x = 2% (d). Kết quả hình 3 cho thấy, các giản đồ đều xuất hiện đỉnh nhiễu xạ ở góc 20 = 25,26°; 34,98°; 37,42°; 43,17°; 52,19°; 57,19°; 60,96°; 66,23°; 67,96° và 76,57° tương ứng với mặt phảng (012), (104), (110), (113), (204), (116), (122), (214), (300) và (1010) đặc trưng cho vật liệu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> cấu trúc hexagonal (theo thẻ chuẩn PDF#71-1123) [6] [7] [8] [10]. Ngoài ra, còn chúng tôi còn quan sát được các đỉnh với cường độ yếu hơn ở góc 20 = 30,97°; 36,51°; 44,73°; 59,10° và 65,00° đặc trưng cho pha tinh thể Cr<sub>2</sub>O<sub>3</sub> (PDF#38-1479). Pha tinh thể của Cr<sub>2</sub>O<sub>3</sub> có xu hướng tăng dần theo nồng độ Mg<sup>2+</sup> trong mẫu.



Hình 2. Giản đồ nhiễu xạ tia X của các mẫu pha tạp Cr<sup>3+</sup>0,5%, Mg<sup>2+</sup>x%; (a) x =0,5%;
(b) x =1%; (c) x = 1,5%; (d) x = 2%.

Từ giản đồ XRD, kích thước tinh thể của các mẫu có thể được xác định theo phương trình [6]:

$$D = \frac{K.\lambda}{\beta. \, Cos\theta}$$

Trong đó, D là kích thước tinh thể;  $\lambda$  là

bước sóng được sử dụng ( $\lambda_{C\mu}$  = 1.54 Å); β là bán độ rộng và θ là góc nhiễu xạ. Tính toán trên góc nhiễu xạ 2θ = 43,17° ứng với mặt tinh thể (113), kích thước tinh thể của các mẫu có nồng độ Mg<sup>2+</sup> khác nhau được trình bày trên bảng 1. Có thể thấy rằng kích thước tính thể tăng dần theo nồng độ Mg<sup>2+</sup> trong mẫu.

**Bảng 1.** Kích thước tinh thể của mẫu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: 0,5%Cr<sup>3+</sup>; x%Mg<sup>2+</sup> (x = 0,5% ÷ 2,0%) tính toán trên góc nhiễu xạ 2 $\theta$  = 43,17° tương ứng với mặt phẳng (113)

| Nồng độ Mg <sup>2+</sup> | 0.5%  | 1%    | 1.5%  | 2.0%  |
|--------------------------|-------|-------|-------|-------|
| D (nm)                   | 41,06 | 42,20 | 44,30 | 44,42 |

# 3.3. Kết quả đo phổ huỳnh quang và kích thích huỳnh quang

Phổ kích thích huỳnh quang (a) đo tại bước sóng 693 nm và phổ huỳnh quang (b) được kích ở hai bước sóng 397 nm và 560 nm của mẫu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha 0,5%Cr<sup>3+</sup>, 1,5% Mg<sup>2+</sup> được trình bày hình 3.



**Hình 3.** Phổ kích thích huỳnh quang (a) và phổ huỳnh quang (b) của vật liệu α-Al<sub>2</sub>O<sub>3</sub> đồng pha 0,5%Cr<sup>3+</sup>, 1,5% Mg<sup>2+</sup>

Trên hình 3a, phổ kích thích huỳnh quang cho thấy có vật liệu hấp thụ mạnh ở 2 vùng rõ rệt ứng với bước sóng cực đại tại 397 nm và 560 nm. Đỉnh hấp thụ 397 nm được giải thích là do sự chuyển mức năng lượng  ${}^{4}A_{2g}({}^{4}F) \rightarrow$ <sup>4</sup>T<sub>1g</sub>(<sup>4</sup>F) và đỉnh hấp thụ 560 nm có nguyên nhẫn từ sự chuyển mức năng lượng  ${}^{4}A_{2p}({}^{4}F)$  $\rightarrow {}^{4}T_{2g}({}^{4}F)$  của ion Cr<sup>3+</sup> [2][8][11][18]. Pho huỳnh quang nhận được ứng với hai bước sóng kích thích 397 nm và 560 nm trên hình 3b cho thấy vật liệu phát xạ mạnh trong vùng đỏ đậm với bước sóng cực đại 693 nm. Ngoài ra, chúng tôi còn quan sát các đỉnh phát xạ với cường độ yếu hơn tại các bước sóng 658, 668, 691, 700, 704 và 712 nm. Nguồn gốc của đỉnh phát xạ 691 và 693 nm là do sự chuyển dời spin cấm  ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$  của các ion Cr<sup>3+</sup> trong các vị trí bắt diện khi các ion Cr3+ thay thế các ion ion Al<sup>3+</sup> trong mạng tinh thể của  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [8][9][11]. Các đỉnh phát xạ 658 và 668 nm là do anti-Stokes ion Cr<sup>3+</sup> gây ra. Trong khi các đỉnh phát xạ 712 nm liên quan đến sự chuyển mức năng lượng  ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ [11][19][20]. Ngoài ra, kết quả cũng cho thấy với bước sóng kích thích tại 397 nm phổ PL thu được có cường độ cao hơn khoảng 2 lần khi kích ở bước sóng 560 nm. Điều này cũng khá phù hợp với phổ PLE như đã chỉ ra trên hình 3a.

Trong bước tiếp theo, tôi khảo sát ảnh hưởng của nồng độ  $Mg^{2+}$  đến tính chất quang của vật liệu  $\alpha$ - $Al_2O_3$ ,  $Cr^{3+}$ . Kết quả nhận được phổ huỳnh quang của vật liệu  $Al_2O_3$ : 0,5% $Cr^{3+}$ ; x%  $Mg^{2+}$  (x = 0,5; 1; 1,5; 2) khi khích thích bằng bước sóng 397 nm được thể hiện hình 4.



**Hình 4.** Phổ huỳnh quang của vật liệu Al<sub>2</sub>O<sub>3</sub> pha tạp 0.5%Cr<sup>3+</sup>, x% Mg<sup>2+</sup> khi kích thích bước sóng 397 nm

Trên hình 4, các phổ huỳnh quang có hình dạng giống nhau, tuy nhiên cường độ thay đổi rõ rệt theo nồng độ  $Mg^{2+}$ . Cường độ PL tăng dần khi tăng nồng độ  $Mg^{2+}$  từ 0,5 đến 1,5% và sau đó giảm xuống ở nồng độ 2%. Điều này có nghĩa là cường độ huỳnh quang cực đại thu được ở mẫu 1,5%. Các nghiên cứu gần đây chỉ ra rằng ion  $Mg^{2+}$  có thể ngăn

chặn sự phân cụm của ion  $Cr^{3+}$  do đó làm giảm các quá trình chuyển dời không phạt xạ. Ngoài ra bổ sung ion  $Mg^{2+}$  dẫn đến ổn định pha tinh thể  $Al_2O_3$ . Tuy nhiên khi nồng độ  $Mg^{2+}$  tăng đến 2% dẫn đến sự truyền năng lượng từ ion  $Cr^{3+}$  sang ion  $Mg^{2+}$  làm giảm quá trình tái hợp điện tử dẫn đến làm giảm cường độ phát quang của vật liệu.

CNHC - SŐ 5/2021



**Hình 5.** Phổ huỳnh quang của vật liệu Al<sub>2</sub>O<sub>3</sub> pha tạp Cr<sup>3+</sup>0.5%, Mg<sup>2+</sup>x% khi kích thích bước sóng 560 nm

Kết quả thu được phổ huỳnh quang của các mẫu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: 0.5%Cr<sup>3+</sup>; x%Mg<sup>2+</sup>(x = 0,5; 1; 1,5; 2) khi kích thích bằng bước sóng 560 nm, cũng tương tự khi kích thích bước sóng 397nm được trình bày trên hình 4. Điều này khẳng định rằng ion Mg<sup>2+</sup> có vai trò rất quan trọng trong việc tăng cường phát xạ đỏ của vật liệu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> : Cr<sup>3+</sup> ở nồng độ thích hợp (1,5%).

Tọa độ màu của các mẫu cũng được tính toán và kết quả chỉ ra trên hình 6. Tọa độ màu (x; y) thu được của các mẫu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: 0,5%Cr<sup>3+</sup>; x%Mg<sup>2+</sup> là (0,727; 0,273), (0,7285; 0,2715), (0,7288; 0,2712), (0,7267; 0,2733) tương ứng với x = 0,5; 1; 1,5; 2. Như chỉ ra trên hình 6, tọa độ màu các mẫu gần như không có sự thay đổi và nằm trong vùng đỏ đậm, chứng tỏ nó có độ tinh khiết màu sắc cao. Để chứng minh cho khả năng ứng dụng của loại vật liệu này, bột  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: 0,5%Cr<sup>3+</sup>; 1,5%Mg<sup>2+</sup>) được phủ lên chíp LED 395 nm và thu được hình ảnh sắc nét như trên hình chèn nhỏ của hình 6.



**Hình 6.** Tọa độ màu các mẫu và ảnh LED khi phủ vật liệu Al<sub>2</sub>O<sub>3</sub>: 0.5%Cr<sup>3+</sup>,1.5%Mg<sup>2+</sup> phủ lên chip 395nm

# 4. Kết luận

Vật liệu huỳnh quang  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha tạp Cr<sup>3+</sup>,Mg<sup>2+</sup> phát xạ mạnh trong vùng đỏ đậm (693 nm) được tổng hợp thành công bằng phương pháp sol-gel kết hợp với thiêu kết ở 1500°C. Phân tích giản đồ XRD chỉ ra rằng bên cạnh pha  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> chiếm ưu thế còn Cr<sub>2</sub>O<sub>3</sub> tồn tại trong mẫu. Kết quả nghiên cứu chứng minh rằng cường độ phổ huỳnh quang của vật liệu  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: 0,5%Cr<sup>3+</sup> phụ thuộc mạnh vào nồng độ Mg<sup>2+</sup>. Dưới điều kiện thực nghiệm, phổ huỳnh quang thu được có cường độ cao nhất tại mẫu pha tạp 1,5% Mg<sup>2+</sup>. Tọa độ màu thu được của các mẫu pha tạp nằm trong vùng đỏ đậm chứng tỏ nó có độ tinh khiết màu sắc rất cao. Các kết quả nghiên cứu cho thấy bột  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> đồng pha tạp Cr<sup>3+</sup>, Mg<sup>2+</sup> có tiềm năng ứng dụng trong chế tạo các LED đỏ chuyên dụng cho cây trồng.

# Lời cảm ơn

Nghiên cứu này được hỗ trợ bởi nguồn kinh phí Khoa học Công nghệ của trường ĐHSP Hà Nội 2 cho đề tài mã số C.2020-SP2-03.

### Tài liệu tham khảo

[1] A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, and B. Pavlyk, "The Effect of  $Cr^{3+}$  and  $Mg^{2+}$  Impurities on Thermoluminescence and Deep Traps in  $\beta$  -Ga<sub>2</sub>O<sub>3</sub> Crystals ," *ECS J. Solid State Sci. Technol.*, vol. 9, no. 4, p. 045008, 2020, doi: 10.1149/2162-8777/ab8b4d.

[2] L. Q. Duong *et al.*, "Synthesis and Photoluminescence Properties of Deep-Red-Emitting CaYAlO<sub>4</sub>:Cr<sup>3+</sup> Phosphors," *J. Electron. Mater.*, vol. 49, no. 12, pp. 7464–7471, 2020, doi: 10.1007/s11664-020-08457-4.

[3] Z. Wang, H. Liang, M. Gong, and Q. Su, "A potential red-emitting phosphor for LED solid-state lighting," *Electrochem. Solid-State Lett.*, vol. 8, no. 4, pp. 33-35, 2005, doi: 10.1149/1.1865672.

[4] V. C. Bender, T. B. Marchesan, and J. M. Alonso, "Solid-State Lighting: A Concise Review of the State of the Art on LED and OLED Modeling," *IEEE Ind. Electron. Mag.*, vol. 9, no. 2, pp. 6-16, 2015, doi: 10.1109/ MIE.2014.2360324.

[5] S. T. Tan, X. W. Sun, H. V. Demir, and S. P. Denbaars, "Advances in the LED materials and architectures for energy-saving solid-state lighting toward lighting revolution," *IEEE Photonics J.*, vol. 4, no. 2, pp. 613-619, 2012, doi: 10.1109/JPHOT.2012.2191276.

[6] G. Rani and P. D. Sahare, "Structural and photoluminescent properties of Al<sub>2</sub>O<sub>3</sub>: Cr<sup>3+</sup> nanoparticles via solution combustion synthesis method," *Adv. Powder Technol.*, vol. 25, no. 2, pp. 767-772, 2014, doi: 10.1016/ j.apt.2013.11.009.

[7] X. X. Wu, W. L. Feng, W. Fang, and W. C. Zheng, "Investigations of spin-Hamiltonian parameters and defect structure for Mn<sup>4+</sup> in Al<sub>2</sub>O<sub>3</sub> from a two-mechanism model," *Phys. Status Solidi Basic Res.*, vol. 245, no. 4, pp. 756-760, 2008, doi: 10.1002/ pssb.200743312.

[8] D. Liu, Z. Zhu, H. Liu, Z. Zhang, Y. Zhang, and G. Li, "Al<sub>2</sub>O<sub>3</sub>:Cr<sup>3+</sup> microfibers by hydrothermal route: Luminescence properties," *Mater. Res. Bull.*, vol. 47, no. 9, pp. 2332-2335, 2012, doi: 10.1016/j.materresbull.2012.05.026.

[9] R. Martínez-Martínez, M. García-Hipólito, F. Ramos-Brito, J. L. Hernandez-Pozos, U. Caldino, and C. Falcony, "Blue and red photoluminescence from Al<sub>2</sub>O<sub>3</sub>:Ce<sup>3+</sup>,Mn<sup>2+</sup> films deposited by spray pyrolysis," *J. Phys. Condens. Matter*, vol. 17, no. 23, pp. 3647-3656, 2005, doi: 10.1088/ 0953-8984/17/23/016.

[10] N. Rakov, G. S. Maclel, B. W. Lozano, and C. B. De Araújo, "Europium luminescence enhancement in Al<sub>2</sub>O<sub>3</sub>: Eu<sup>3+</sup> powders prepared by direct combustion synthesis," *J. Appl. Phys.*, vol. 101, no. 3, pp. 1-4, 2007, doi: 10.1063/1.2431400. [11] K. Drdlikova, R. Klement, D. Drdlik, D. Galusek, and K. Maca, "Processing and properties of luminescent Cr<sup>3+</sup> doped transparent alumina ceramics," *J. Eur. Ceram. Soc.*, vol. 40, no. 7, pp. 2573-2580, 2020, doi: 10.1016/ j.jeurceramsoc.2019.11.010.

[12] Z. Hu, D. Ye, X. Lan, W. Zhang, L. Luo, and Y. Wang, "Influence of co-doping Si ions on persistent luminescence of ZnGa<sub>2</sub>O<sub>4</sub>: Cr<sup>3+</sup> red phosphors," *Opt. Mater. Express*, vol. 6, no. 4, p. 1329, 2016, doi: 10.1364/ ome.6.001329.

[13] C. Liu, Z. Xia, M. S. Molokeev, and Q. Liu, "Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca<sub>3</sub>Ga<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub>:Cr<sup>3+</sup> by codoping Bi<sup>3+</sup>," J. Am. Ceram. Soc., vol. 98, no. 6, pp. 1870-1876, 2015, doi: 10.1111/jace.13553.

[14] P. Lommens *et al.*, "Photoluminescence properties of Co<sup>2+</sup> doped ZnO nanocrystals," *J. Lumin.*, vol. 118, no. 2, pp. 245-250, 2006, doi: 10.1016/j.jlumin.2005.08.020.

[15] C. Renero-Lecuna *et al.*, "Photoluminescence in ZnO:Co<sup>2+</sup> (0.01%-5%) nanoparticles, nanowires, thin films, and single crystals as a function of pressure and temperature: Exploring electron-phonon interactions," *Chem. Mater.*, vol. 26, no. 2, pp. 1100-1107, 2014, doi: 10.1021/ cm403371n.

[16] A. M. Srivastava, M. G. Brik, H. A. Comanzo, W. W. Beers, W. E. Cohen, and T. Pocock, "Spectroscopy of Mn<sup>4+</sup> in Double Perovskites, La<sub>2</sub>LiSbO<sub>6</sub> and La<sub>2</sub>MgTiO<sub>6</sub>: Deep Red Photon Generators for Agriculture LEDs," *ECS J. Solid State Sci. Technol.*, vol. 7, no. 1, pp. R3158–R3162, 2018, doi: 10.1149/2.0191801jss.

[17] M. Li *et al.*, "Cr<sup>3+</sup> doped ZnGa<sub>2</sub>O<sub>4</sub> far-red emission phosphor-in-glass: Toward high-power and color-stable plant growth LEDs with responds to all of phytochrome," *Mater. Res. Bull.*, vol. 108, pp. 226–233, 2018, doi: 10.1016/ j.materresbull.2018.09.014.

[18] V. Singh, R. P. S. Chakradhar, J. L. Rao, and H. Y. Kwak, "EPR and photoluminescence properties of combustion-synthesized  $\text{ZnAl}_2\text{O}_4$ :  $\text{Cr}^{3+}$ phosphors," *J. Mater. Sci.*, vol. 46, no. 7, pp. 2331– 2337, 2011, doi: 10.1007/s10853-010-5078-z.

[19] V. Singh, R. P. S. Chakradhar, J. L. Rao, K. Al-Shamery, M. Haase, and Y. D. Jho, "Electron paramagnetic resonance and photoluminescence properties of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> :Cr<sup>3+</sup> phosphors," *Appl. Phys. B Lasers Opt.*, vol. 107, no. 2, pp. 489–495, 2012, doi: 10.1007/s00340-012-4993-x.

[20] F. Rossi, G. Pucker, M. Montagna, M. Ferrari, and A. Boukenter, "Fluorescence line narrowing study of  $Cr^{3+}$  ions in cordierite glass nucleating MgAl<sub>2</sub>O<sub>4</sub> nanocrystals," *Opt. Mater.* (*Amst*)., vol. 13, no. 4, pp. 373–379, 2000, doi: 10.1016/S0925-3467(99)00091-9.

CNHC - SŐ 5/2021