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Abstract - The development of a small signal model that 
accurately reflects dynamic processes plays an essential role in 
the stability analysis and control of power systems. The main 
components in a microgrid power system are synchronous 
generators, the electrical network, electrical loads, and inverters. 
A method to derive the microgrid state-space model is proposed 
in the article. This method is based on linearized models of 
synchronous generators, electronic power inverters, networks, 
and loads. This model can be further developed to account for 
microgrid control schemes such as frequency control and voltage 
regulation. A small-signal analysis of the Microgrid model is also 
carried out in this work.
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1. Introduction
The increasing penetration of distributed energy 

resources such as wind and solar is a trend that has been 
observed in many electric power systems [1], However, the 
control and operation of distributed generation sources 
(DG), especially those of inverter-based generators, have 
many differences compared to the operation and control of 
conventional power systems. A microgrid (MG) can be 
established by connecting DG and local loads, which 
operate both in grid-connected and islanded modes. This 
can help increase the flexibility in the operation of DG and 
the reliability of the whole system [2], [3], The typical 
structure of a MG is shown in Figure 1.

Figure I. Typical structure of microgrid
Some of the distinctive features of the MG operation 

and control can be described as follows: i) The rotating 
inertia of the MG system is usually small, compared to that 
of a large synchronously connected grid, because the 

inverter-based sources have inherently zero inertia; 
ii) The MG usually consists of low/medium voltage 
networks which have low X/R ratios. On the other hand, 
conventional transmission systems have high X/R ratios, 
which makes the active power transfer primarily dependent 
on angle difference; Hi) The primary generation sources in 
microgrid are variable sources (e.g., wind and solar) which 
are stochastic and uncertain. The uncertain nature of these 
sources has a significant impact on the control and 
operation of MGs [4], [5].

In the grid-connected mode, the voltage and the 
frequency stability depend on the dynamics of the grid. On 
the other hand, in the islanded mode, the voltage and the 
frequency stability are heavily influenced by the internal 
dynamics of MG [6]. The control of the power distribution 
between DG and of bus voltages is carried out by the 
control system of DG [7]. Depending on the specific 
control scheme [7], a DG can operate like a current source 
inverter (CSI) or a voltage source inverter (VSI). In the 
islanded mode, the VS1/CS1 control scheme plays a vital 
role in small signal stability.

In the small signal stability analysis of traditional 
electric systems, the time constants of electromechanical 
oscillation are much higher than time constants of network 
transients. Therefore, the network transients can be omitted 
[8], Because of the reduced inertia in MG, ignoring 
network transients is no longer suitable. Some MG small­
signal models are proposed in [9], [10], In [9], the MG 
small-signal model with the central element being VSI is 
proposed. However, this model does not account for DGs, 
which are based on synchronous generators. The proposed 
model in [10] is based on synchronizing individual models 
in rotating reference frame dq. The connection of each 
individual model is based on an equation of bus voltage 
vectors at the nodes in the grid, so it is difficult when the 
number of nodes in the grid is high.

This article proposes a method to formulate a MG state­
space model, with the following features:

- Including a variety of DGs, which are synchronous 
generators, voltage source inverters;

- Considering the network transients, including 
transmission lines and RLC loads;

- DG models are modified so that the input and output 
vectors match the input and output vectors of the grid;

- The models are synchronized following only one 
rotating reference frame.
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2. The state space model of microgrid
For the sake of convenience in developing the state­

space models of different elements, the dq rotating reference 
frame is employed. First, each element is modeled in a 
separate local rotating reference frame {def). The exchange 
of the quantities on the abc axes to rotating reference frame 
dq is based on the Park transformation formula [8].

When combining the elements, it is necessary to 
transfer the local rotating reference frames dqn into the 
global rotating reference frames def [11]. The relationship 
between the frames is:

fd = FcosA„ 
//] Lsin<5»

-sinốn~| fS
COỈỖ,, f"

(1)

Linearizing (1) leads to:
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Combining (2), (3), and (7) and transposing the matrix, 
we get the state-space model:

Axg = ,4Ax„ + K'Av' + B"Su (8)* s g V A
In formula (8), the input variables can be broken down into:
Av' =[Av? SvdJ: Su =[av/(/ STm^

Thus, the synchronous generator model has the vector 
of input variables being voltages, and the vector of output 
variables being the electric currents.
2.2. VS! inverter model

The overall control diagram of a grid-connected DG 
through the VSI is shown in Figure 2 [10]. The VS1 model 
consists of two main elements: i) the power circuit 
connecting VSI and the grid; ii) the VS1 controlling system.

AZf C"0 
cos 0„ 

sin ốz/

-sin <3°

£,0 
cos ố;

(2)

where: f" -,fg =[////J are respectively the

quantities in the local rotating reference frame (dq") and the 
global rotating reference frames (dqgy, 8n is the angle 
difference between two axes dq" and dqg. The subindex “Ớ” 
denotes steady-state operating values.
2.1. Synchronous generator model

The small-signal model of a two-pole, three-phase 
synchronous machine is presented in [12], The differential 
equations that describe the voltage equations between the 
elements in a synchronous generator and are introduced in 
the matrix form:

Figure 2. The overall control diagram ofvsi
The main control system consists of two inner current 

control loops following the two axes of dq, and two outer 
power control loops, which send the reference value to the 
two inner current control loops. The secondary control loops 
determine the set point values (active and reactive power).
2.2.1. The VSI coupling circuit

Vs =G.r+llị(F) (3)
at

where: irS — Fv.v.jVl..<vi...->v,:jVl., : /■' = F/..Z .,Zi...i ii-.-'d titer \_vqvdvkq\vkq2v Jirkd J ’ 1 \_lqldlkqVkq2lfdlkd ỵ

vectors of voltages and currents of the stator windings (q.dy
damper windings (kql, kq2, kd) and field winding (fdy

The swing equations:
2H dco — —

, 1 m t e
COB dt

(4)

dỗ 
dt (5)

Averaged 

ideal three- 

phase vse

where a> is rotor angular speed; H is the inertia constant of 
rotor and load; Tm, Te are the mechanical and airgap torques:

Te = Xmd (~‘d + ifd + ikd'>~ *mq Hq + 'fayl + '^2 ) (6)

Figure 3. The circuit diagram of f'SI
The coupling circuit is described by means of the 

following differential equations:

(7)

Sei, A V----- — Ad

Rflubc + Lf . hl he Vl.abc vDCi.abc
dt

(9)

Through the Park transformation, (9) is converted into 
the rotating reference frames dq":

d ; _ Rf : , 1 I.. .. \d,<d = ~-r‘d+arÌq+ỹ-ự,.d ~vDG,d )
dt Lf Lf

n , . * (10)

Linearizing the above ddifferential equations yields:

ESXịỊ = FSxs + u

The vector of the states variables is as follows:

A'ợ A'</ A'*ợl &kq2 A' fd&kd

The vector of input parameters is:
" = [^qSvjSv  ̂Av^AVyj/Av^AT; J

d : _ “/ ; „ : 1 I.. .. \

By changing variables to decouple the quantities on two 
dq axes, we can obtain:



ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL 19, NO. 6.1, 2021 19

vq - vl.q ~vlx;.q ~ a^Lf'd
(11)

Combining (10) (11) and re-writing in the matrix form:
0d id 

d,['q
-Rf/Lf 

0
'■J
<7 J 0

0 R

Linearizing (12), combining with (2), and changing the 
frames of dq" into def, one obtains:

A XDG = .4?AxZXj. + B'i',x,\vlxi + B°,\0 + B'f\a)r (13)

+ B'fkvdll

With: Axzx; = [a/iZAzJ7;Av1á/ = [av<zAvJ7

The power circuit model is shown in Figure 4.

Av/k; = [AvZX;(ZAvZJf;i]7 ;

Figure 4. The VSI power circuit model
2.2.2. The VSI controlling system model

a. Phase-locked loop (PLL)
The determination of the rotational frequency of the 

local rotating reference frames dq" and the phase difference 
angle (p plays an important role in connecting VSIs to the 
electricity grid, and this process is done by the PLL [13].

The linearized dynamic model of PLL:

A = kpn - kpn Jipnbw,
+ kpll-kLifỡrẹt - A0) (14)

A(? = A<yr

b. Power controller
A power controller consists of two loops, which are 

responsible for controlling the active power p, and the 
reactive power Q. as shown in Figure 5. Pref, Qref are the 
respective reference values provided by the secondary 
control [5]. Poul, QOld are determined by the electric currents 
and voltages in the dq frame, as follows:

Qoul ~ IXi.cfl ^IXi.d^q)

3 (15)
Bold = ~{vDG,d‘d + vDG,q'q )

The dynamic model of the power controller is:

. liq Qref Qmd
* (16)

d-j — p — p
dt 'id 1 ref 1 OU!

(12) Combining (15)-( 16) and linearizing, we have:

isiid = tsPri.f ~ — (x°x:d\id + idkvIXjd + vỹx;</Az'1/ +i°Avflc>(/)

A'«z = kQref--(^DC.q^d+'d^lXt.q -^DCi.d^'q -‘qto’DG.d ) 
2 (17)

Figure 5. The power controller
From that, it is possible to identity diqrefr didref 

^'qref =-^kpq(V°tM.q^d + id^VDG,q ~VDO.d^q

~ Iq ^DG,d ) + k pq^Qref + kịqlịq

^dref ~ ~ pd (VDG,d^d + ‘d^vDG.d +v°xi.q^‘q

+ 'q&vDCi,ql + kpd&Bref +kid‘ld

c. Current controller
The low-pass filter in the current controller consists of 

two PI compensators shown in Figure 6 [14], [15]. The 
symbol "f" denotes the filtered quantities.

Figure 6. Current controller
The differential equations of the linearized current 

controller are:
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— Avw - Aidref Aid
dt (19)

-Ai/

The vectors of voltages at the connection point of a DG 
[Vt.d vt.q] can be represented by the following state 
variables:

fa’/.d = Ava -°>rLf + kiAVi.d + kpAv'.d
(20)

Av,., = Av/ + ^rLf^'d + kư&'’i.<Ị+kpÃ'''.‘t

From (14), (17), (19), (20), one can obtain a controller 
state-space model:

Axt = + B^’Ax^ + 5;«-Arzx; + B^Av, (2])

+ Buc'ỵ’Aulỵj + b/aớ

where: Axc = [av/Av/ Ai/ Ai' Av^Av^AiyA^A^Aớ]

Au In, = AQn,t AOríj ^rẹ! ]

The full mathematical model of DG is represented in 
the system of equations (13), (21). In this model, the 
current vector is the input, and the voltage vector is the 
output.
2.3. The network model

: load!

d [‘load!

fí,ỉ, i Ihmei ỈXlineĩ Minei
• 9 I I— • , • • •

T ’ boat* t k ‘

R-ioadk

^Network J '
I'loadk

X I )

Figure 7. General inductive branch diagram
2.3.1. Inductive branch model

The general diagram of the branch connecting node j to 
node k is shown in Figure 7. The branch equations can be 
written as follows:

, dh.abc . n ; _
ki , Rih.abc ~ Vj.abc vk.abc 

dt
(22)

Converting (22) to the dq coordinate system yields: 
diid _ B , „ , 1 1 .
dt ~ £, ‘d + W'/</ + £, Vj-d L, Vk-d

-L (23)

—T- - ~.‘io - °>jid + —■ V,„ ~.vk a dt L, iq sid i-q L, k-q

Extending (23) for n branches in the grid, linearizing 
and writing in matrix form yield:

Axiir = AfirAx/ir + BKrAvN (24)

Afv =[^1^2^..^ J ;AvN = [av1^Av2^..Av„^]7

A Hr - dlas\_Aiir\ABr2 — ■ B/ir ~ &Hr2 —Bhhi-Ị

L,
(0s

1

T
0 .

Li
0 ...

Apn -
R, 1 1

-Cữs ... 0 077 2y(2m)

2.3.2. Load model
In this work, we consider the RL load. The differential 

equation for this type of load is as follows:
. dhoadi . r. . , , - -,
ki d! *■ Bjhuadj ~vj,abc (25)

Writing (25) for m loads connecting to m nodes and 
linearizing, one obtains the following:

dlloadjd R' i 1

dt J hoadjd + as‘l<>adjq +yVJ.d

(26)
dhoadjq 

dt
= -ĨLi, 

£ *!oadjq
1

^shoadjd + L vi-<t

Writing (23) for n branches in the grid, linearizing, and 
writing in matrix form yield the following equation:

Ax/.oa/ = -4/om/Ax/fMi/ + BIoadAvN (27)

Where: Axl<iad = \_MioadịdqAÌioad2dq...Mllxxlmdqỵ

A/oad — d^S\_A/oad\JAload2""Atoadmj2mx2m

Axv — AỵpiAxỵ + BjqEpAvE (28)

where: AxN =[AxfírAxload^

Anet = diag^A^Afg^Bf^j- =\BBrBinjd^;

The vector of the state variables includes the current 
across the inductive components, the voltage across the 
capacitive components with inductive networks 
vN=[vd’vq]T', yfq=[‘dAq]1 ■ The voltage vector is the input 
variable, and the current vector is the output variable.
2.4. Microgrid general model

The diagram describing elements interconnection is 
shown in Figure 8. All elements need to have currents as 
input and voltages as output to interface with the grid 
model [16]. Therefore, it is necessary to modify the source 
model of the DG by adding a parallel connection with a 
capacitor of sufficiently small value. With the DG model 
being modified to take currents as input, the small-signal 
model of MG is shown in Figure 8.

The MG model shown in Figure 8 is the result of the 
combination of (8), (13), (21), (28):
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Sxmg - AKI(iSxKI(l + BM(l/\uMi
Ay Mil = C- MC.AXyKj +

where: ArAjG = [AxgAx/X;Axl.AxA,e,, J

(29)

A"a/G =

Figure 8. Microgrid general model

3. Case study
3.1. System parameters

The proposed state modeling method is applied to a three- 
node MG, shown in Figure 9. Parameters of the elements in 
the schematic are given in Table 1,2. The proposed modeling 
approach is implemented in Matlab/ Simulink.

---------  ----- ------------ ; —--------- --------- ►Load?
\__ PCC --------
GRID —i Ị——I 1X1 2

T
Load 1 Rtinri L

4«.- .

-------- ► Load 3

■ DG3 ị

(5)

3.2. Eigenvalue analysis
Table 3 shows the eigenvalues of the MG model in 

Figure 9 in the grid-connected mode. All 28 eigenvalues 
have negative real parts. Eigenvalues from 1 to 18 are 9 
pairs of complex conjugates, representing 9 modes of 
oscillation in the system.

The eigenvalues 1 to 14 characterize the electrical 
oscillation between the DGs and the grid. The eigenvalues 
15 to 18 characterize the mechanical oscillation between 
the DG2 rotor and the system.

Table 3. Eigenvalues of MG
Eigen 
values

Real (1/s) Im (rad/s)
Eigen 
values

Real 
(1/s)

Im 
(rad/s)

1.2 -91.13 ± 5628.5 19.20 -333.33 0

3.4 -97.84 ± 4870.9 21 -276.88 0

5.6 -158.29 ±3653.6 22 -257.73 0

7.8 -145.69 ± 3709.7 23 -92.65 0

9.10 -222.40 ±377.0 24 -36.12 0

11.12 -6.01 ±375.7 25 -8.26 0

13.14 -71.24 ±363.8 26 -8.26 0

15.16 -0.80 ± 13.7 27 -1.15 0

17.18 -55.15 ± 1.6 28 -0.42 0

3.3. Sensitivity analysis
To determine the optimal control parameters in the grid 

separated mode, we examine the parameters in the PI 
controller within the power control, which are kpd and kpq.

Figure 10a shows the trajectories of the eigenvalue pair 
(7,8) when J varies from 0.01 to 0.9. Notice that when the 
kpd value increases, the eigenvalue pair tends to move 
towards the increasing damping coefficient and vice versa.

Similarly, Figure 10b shows the trajectories of the 
eigenvalue pair (5,6) when varies from -0.9 to -0.01. It 
can be observed that when the kpq is increased, the 
eigenvalue pair tends to move towards the decreasing 
damping coefficient and vice versa.

Figure 9. Microgrid in case study 
Table 1. Branch and load parameters

Sb= 10MVA: Vb= 13.8 kV Load 1 1.65+j 2.02 MVA

Line 1 0.2087+j 0.3692 pu Load 2 2.3 +j 1.47 MVA

Line 2 0.3468+j0.5329 pu Load 3 1.8+j 0.6 MVA

Table 2. Source parameters
DG2 - Synchronous Gen 
Sb = 5 MVA; Vb= 13.8 kV

DG3, Sn = 3 MVA 
Power electronic interface

fa 0.0052 pu Lf 0.1 mH

Xd 2.86 pu Rf 2.4 mil

X‘I 2.0 pu kpii 1

Xlkd 0.0208 pu kfnt 313

Xifd 0.6157 pu klH 10000

Xkd 2.68 pu kpd 0.06

Xfd 3.2757 pu kp<i 0.028

Xis 0.2 pu kpi 0.205

rkd 0.1381 pu hi 1.6

rfd 0.0026 pu kpr 0.205

H 2.9 pu hr 1.6

Real (1/s)

Figure 10. The orbits of the eigenvalue pair (7.8) and (5,6) 
when kpd and kpq change
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3.4. Step response and frequency response
The small-signal model in (29) is used to analyze 

responses in the time domain and frequency domain. We 
apply a step change in power (Prefl) and observe the 
changes in voltage variables (Prep).

Time (seconds)

Figure JI. Response voltage ld</3 from Prefl

Time (seconds)

From Qref3

Time (seconds)

Figure 12. Response of voltage Vdq3 from Qrefl
Figure 11,12 shows the time response of the voltage 

parameter Vdq3 when step changes of Prefl and Qrefl are 
applied. The response time and output voltage responses 
can be easily observed.

Freauencv (rad/s)

Figure 13, l d(/3 / Prẹf3 bode diagram

1Ộ’2 Kr Itr 104 icfc 
Frequency (rad/s)

Figure 14. Vdq3 / Qrefl bode diagram
Figure 13, 14 shows the bode diagrams of transfer 

functions between Vdcfl/Prefl, and between Vdq3 / Qrefl. The 
Bode plot shows that the bandwidth of input/output is 
approximately 100Hz. This information can be utilized to 
provide a balanced solution between the bandwidth of 
input/output transfer functions while maintaining the 
small-signal lability of the system.

4. Conclusion
The development of a small signal model of microgrids 

plays a vital role in their stability analysis and in 
determining their optimal control parameters. The MGs 
have many different characteristics from the traditional 
grid in terms of small-signal stability. The fundamental 
difference comes from DGs dynamics being influenced by 
the electronic-based power converters with zero inertia. 
Besides, in studying MG stability, it is necessary to 
consider the electromagnetic transients on the RLC circuits 
of the transmission lines.

The article proposes a method to derive a small-signal 
model of DGs consisting of synchronous generators, 
inverters and RLC network circuits. The article also 
proposes an approach to connect different element models, 
thereby building a full microgrid model including typical 
components of DG, taking into account the network 
transients. The eigenvalue, sensitivities, time, and 
frequency responses of the built model have been analyzed.

In future works, the proposed small-signal model can 
be augmented with the secondary control loop to study 
different MG control strategies and their robust stability 
characteristics.
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APPENDIX
The state-space matrices of the power circuit and control system of 

VSI are described in (13), (21).
Power circuit of VS1 from (12)

The differential equation of (31)

A x/x; = 7„°Axix;„+ 'S b = T„°(A„Ax,X;„ + B^Avq ) + ig ổ
. . (33)

= 7'„°4(7,“) AxpG-T^A^ ,0sAd + T°h^Avjil+,0/d

In (33), Ab can be deduced as a function of voltage angle A0 in the 
local dq" reference frame.

A<5 = A7„(t„°)’'av/x;-AỚ (34)

The state-space equation in (13) is obtained by substituted for A<J 
from (34) to (33):

Axix = ApAxa: + B'pX‘Avlx3 + BpA0 + Bp~ Alor

+ B'^Avdq

Where: Ap = rf.4.(7^'; Bjlxi =

BỈ," =-7Ía(^)-14; Bp = T° A (t®)’1'° Bpr =íẵ ;

. . . IT / Lf o'
1 " [ 0 \/Lf

Control system of VS1 from (14), (17), (19), (20)

Axe = JA + b/X;"Ax/jg„ + B^Avpxtn + B  ̂Av, (36)
. F,vtxj.+ Be Auịxị

The state-space model in (21) is obtained through expressing 
Axũ(ín and AVpxin in the global rotating reference frame dtf.

Axc = 4rAxc + BỈIX!AxI)G + B^UiAvlxi + B  ̂Av, 

+ BĨ^Audg + B^AB

Where =^vZX'".(r„°

A xtxjn — AnAx/)(Ịn + B,J qAvdq„ (30)
RxlXin_(° 0001/7; 0 000000'
‘ = |o 0 0 0 0 1/7; 0 0 0 0 0 0

Vector Ax/x;„ and Av/ỵr„ need to be expressed in the global rotating 

reference frame dqx

^IX,=rf^rx,n+lgAS
" (31)

Av/» = Tn^DGn + vdA<5

Where: ,0 = Hf»jJ°]r ; vg =[-vf°,vf°f;r°-

teDGn=(rf)'

t^DGn AvDG-(^f1

cos5„
sin <5?

- sin 0„
_  cO COSỜ„

(32)

bv7XJ = BvDGn ậo ) 1 _ gvIXin ,0^7^'

-B^n(T^'iOsMn(^y'

RvDGn_(llTv 0 000000000 0/
Bc 0 1/TV 0000000000J

fo 0 ,/rv 0 00000000/
‘ =(o 0 0 1/7; 0 0 0 0 0 0 0 oj

if. = ^"(tÍ)’1 fs + v3




