
Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 19

A verification framework for specification centered developments

Một khung làm việc kiểm chứng cho quy trình phát triển phần mềm lấy đặc tả làm trung tâm

Vũ Diệu Hương*

Vu Dieu Huong*

Information Technology Department, Economic Information System and E-Commerce Faculty, Thuong Mai University,

79 Ho Tung Mau, Hanoi, Vietnam

Văn phòng Công nghệ Thông tin, Khoa Thương mại Điền tử và hệ thống Thông tin Kinh tế, Trường Đại học Thương

mại, 79 Hồ Tùng Mậu, Hà Nội, Việt Nam

 (Ngày nhận bài: 18/6/2021, ngày phản biện xong: 19/8/2021, ngày chấp nhận đăng: 17/10/2021)

Abstract

Requirement specifications are initial inputs of every software development process. Referring to the specification is

frequently needed through the software development phases. Because the specification has such a tremendously

important role in the software process, its quality should be ensured before it is used to drive life – cycle activities. Once

the quality of the specification is ensured, it is reliable input to verify the other artifacts outputted from various

development activities like design and implementation. In this paper, we propose a verification framework for

specification centered developments. In this framework, we firstly focus on improve the quality of specification then

use such high-quality specification to drive the verification of the design and the implementation. This framework could

be applied in domain of reactive systems with high automation, adaptation, and practicality.

Keywords: software verification; formal verification; specification centered development; reactive systems.

Tóm tắt

Đặc tả yêu cầu là đầu vào khởi đầu của mọi tiến trình phát triển phần mềm. Tham chiếu tới đặc tả là cần thiết ở mọi pha

trong tiến trình phát triển phần mềm. Vì đặc tả có vai trò đặc biệt quan trọng như vậy, chất lượng của đặc tả nên được

đảm bảo trước khi nó được sử dụng để dẫn xuất mọi hoạt động của vòng đời phát triển phần mềm. Một khi chất lượng

của đặc tả đã được đảm bảo, nó sẽ là một đầu vào tin cậy để kiểm chứng các chế tác được cung cấp bởi các hoat động

khác nhau trong vòng đời phát triển phần mềm, ví dụ như mô hình thiết kế, chương trình. Trong bài báo này, chúng tôi

đề xuất một khung làm việc kiểm chứng cho tiến trình phát triển phần mềm lấy đặc tả làm trung tâm. Trong khung làm

việc này, đầu tiên chúng ta sẽ tập trung vào cải tiến chất lượng của đặc tả rồi sử dụng đặc tả có chất lượng được đảm

bảo này để dẫn xuất cho hoạt động kiểm chứng thiết kế và chương trình. Khung làm việc này có thể được áp dụng trong

miền các hệ thống phản ứng với tính tự động hóa cao, tính thích nghi tốt và tính thực hành cao.

Từ khóa: kiểm chứng phần mềm; kiểm chứng hình thức; phát triển phần mềm lấy đặc tả làm trung tâm; các hệ thống

phản ứng.

*
Corresponding Author: Vu Dieu Huong; Information Technology Department, Economic Information System and E-

Commerce Faculty, Thuong Mai University, 79 Ho Tung Mau, Hanoi, Vietnam

Email: huongvd@tmu.edu.vn, vudhuong@gmail.com

5(48) (2021) 19-30

mailto:huongvd@tmu.edu.vn
mailto:vudhuong@gmail.com

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 20

1. Introduction

Requirement Specifications [15]

(Specifications for short) describe expected

(external) behaviors of the software. They also

describe nonfunctional requirements, design

constraints and other factors necessary to

provide a complete and comprehensive

description of the requirements for the

software.

Specifications are initial inputs of every

software development process. Moreover, they

are involved in every phase of the development

processes. Referring to the specification is

frequently needed through the software

development phases. In other words, various

development activities are based on

specifications: design, implementation, testing,

maintaining. Specifications are used as the

basis for providing and ensuring the quality of

designs and implementations.

Because the specification has such a

tremendously important role in the software

process, its quality should be ensured before it

is used to drive life – cycle activities. Once the

quality of the specification is ensured, it is

reliable input to verify the other artifacts

outputted from various development activities

like design and implementation.

Reactive system [16] (RS for short) is a

system that continuously interact with its

environment by responding to external stimuli.

For example, vending machines, elevator, and

operating systems are reactive systems. The

environment of a vending machine includes

customers who want to buy products restocked

in that vending machine; and, the environment

of an operating system includes software

applications running on that operating system.

Several reactive systems are considered as

safety-critical (e.g., operating systems for

mobile vehicles). Such kind of systems should

be seriously verified because their errors cause

highly destructive effects on the human life and

the assets.

Quality improvement for RS in a unified

verification process is still a great challenge.

What we need for such verification process

includes: (i) a high-quality specification which

is consistent and validated against user

requirements; (ii) this specification is used as a

confident input to formally verify both of the

design and the implementation. We know that

there exists a gap between the specification and

the design. The specification defines abstract

data structures, whereas the design defines

implementable data structure. Also, the

specification defines results of operations,

while the design defines details of how to make

the results. There are two main approaches for

verification of every software including

reactive systems. In the first approach, we can

describe the specification in an appropriate

specification language like Z [7], VDM

(Vienna Development Method) [6], Event-B

[5]; then, we derive the behaviors of the design

from the higher-level specification as adopted

in [5]. The problem of this approach is that in

order to represent highly optimized behaviors

of reactive systems, we need to use various

complex data structures and control structures.

Therefore, directly deriving these behaviors

from the abstract specification is generally very

hard. In the second approach, we can use

imperative specification languages like Promela

[8] to describe the design. This facilitates

describing the highly optimized behavior by

using various data structures and control

structures. In this approach, the specification or

the properties we want to check can be

described in temporal logic. However, we

consider that temporal logic formulae, which

allows us to describe properties about

invariants on some variables and the relative

order of event calls, but are not adequate for

describing the important properties of reactive

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 21

system concern with the pre-condition and the

post-condition of each event invoked from their

environment. Moreover, we could not ensure

the consistency of these properties in the

temporal logic formulae. Also, such formulae

are not appropriate inputs for verification of the

implementation.

Our idea is using the rich notions (e.g. sets

and relations) in the formal specification

languages like Event-B, we could easily

describe properties we want to verify.

Therefore, we intendedly use Event-B to

facilitate describing properties of the reactive

system. In Event-B, one can describe the

system as a set of events and the behavior of

each event can be specified as pre-conditions

and post-conditions using the rich notions. It

also provides a facility to verify the consistency

and the correctness of the properties. This

results high-quality specifications. Furthermore,

such specifications are appropriate inputs to

automated verify the implementation.

For verification of the design, our idea is to

describe the design in imperative specification

languages like Promela, which is easy to

represent the design. We think that dealing with

the specification and the design based on the

different specification languages is appropriate

for systems in which there exists a big gap

between the specification and the design like

the reactive systems. Then, we verify the design

against the specification. In this case, we must

deal with the difference between the language

used to describe the specification and that for

the design.

In this paper, we propose a verification

framework for Specification Centered

Developments in which Specifications are

verified first; Specifications are used as the

inputs for ensuring the quality of designs and

implementations. In our framework, we intend

to use different specification languages for the

specification and the design to facilitate the

description of them. That is, Event-B is adopted

for the specification and Promela for the

design. We deal with the difference between

specification languages for the specification

and the design by common semantics, label

transition systems (LTSs), and correspondences

between state transitions given by mappings

from syntactic elements in the former to those

in the latter. This approach is also applied to

deal with the gap between the specification and

the implementation. Therefore, our framework

accepts any programming language used in the

implementation. In other words, the

specification described in Event-B is also

appropriate input to verify the implementation.

This makes it possible to systematically ensure

the quality of reactive systems based on the

confident specification with high automation,

adaptation, and practicality.

2. Related works

Using formal specifications as inputs for

software verification is presented in [1] and

[14]. [1] presents an approach to verify the OS

kernel by applying theorem proving. Theorem

proving can be used to verify the infinite

systems; but, it generally requires a lot of

interactive proofs. [14] applied the model

checking technique to verify the correctness

properties of safety and liveness of target

systems. In our workflow, we use model

checking combing with prover tools of Event-

B. Although ranges are bounded due to the

limitation of model checking; however, we are

able to improve quality of the properties

checked and get completely automatic

verification. Therefore, we have a high degree

of confidence in the verification results.

Animating Event-B models is implemented in

ProB [2] and Eboc [3]. In these approaches, the

target models are described in Event-B. ProB

and Eboc directly check the target models

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 22

against the internal consistency. We use Rodin

prover of Event-B to ensure the internal

consistency and use our animator to validate.

We use our own tool to generate the LTS of the

Event-B specification. Formal Specification

Centered Development Process is presented in

[4]. However, this work applies model

checking technique to give test suite from the

formal specification. Our framework uses the

formal specification for not only verification of

the design but also that of the implementation.

3. Verification framework

Our framework is illustrated in Fig.1. Initial

input of the framework is a statement of user

requirements. That is an informal description of

user requirements. Originally, the user

requirements are usually described in natural

languages. Due to the ambiguity of natural

languages, such informal descriptions could

lack consistency. Moreover, they are not proper

inputs for the formal verification. Therefore, we

need formal specifications replacing for the

informal ones to drive life - cycle activities

including verification of the designs and the

implementations. The quality of formal

specifications should be ensured before we use

them to drive life - cycle activities.

Fig.1: Verification Framework (steps)

Three verification activities are shown in the

Fig.1. The first activity is formalizing and

validating the requirements. This step provides

the high-quality formal specification of

requirements. The second activity is checking

the design against the formal specification.

This step uses the formal specification as a

reliable input to verify the design by applying

model checking technique [8]. The last activity

is checking the implementation against the

formal specification. Also, this step uses the

formal specification as a reliable input to verify

the implementation by applying testing

technique [13]. As mentioned earlier, this

framework adapts to overall software

development processes such water fall,

evolution model, agile methods. The

verification is an ongoing process and the

verification activities are integrated in the

development activities. Once, both of the

design and the implementation conform to the

specification, we are confident that the

implementation also conforms to the design.

Actually, we could show the conformance

between the implementation and the design by

applying the same approach.

4. Formalizing and validating requirements

in Event-B

4.1. Requirements of reactive systems

Features or aspects of reactive systems are

commonly mentioned as (i) external behavior

or functional requirements, (ii) properties or

non-functional requirements, (iii)

communication or links between controllers

and physical entities like sensors and actuator

[9], and (iv) communication between reactive

systems and their environments [10].

Our framework focuses on verifying quality

of Specification, Design and Implementation

for reactive system. This section aims at how to

provide a high-quality specification. In our

point of view, a high-quality specification is

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 23

one that (1) it has sufficient requirements for

user’s needs and (2) it is well structured,

unambiguous, consistent, readable, and easy to

review and validate.

The requirements are generally divided into

functional requirements and non-functional

requirements (i.e. constraints). In the

specification of reactive systems, we focus on

the behavioral aspect of target systems in

communication with their environments. Such

aspect concerns with system services and

constraints on service operation in

combination with the environment. For

example, services of Vending Machine (VM)

include switch on, switch off, restock an item

into VM, collect coins, and dispense an item to

the customers. A few of constraints on these

services are as below:

 Pushing a button shall vend an item of the

type corresponding to that button

 The machine shall retain exactly item cost

for each item vended

 The machine shall return all deposited

money in excess of item cost

 The machine shall flash the light for a

selected item while vending is in progress to

indicate acceptance of a selection to the

buyer.

Constraints are divided into two kinds of

conditions. The first one is pre-condition, that

is, the condition under which a service is

activated. Another one is post-condition, that is

action or result of service execution. For

example, when the customer inserts a coin,

collected coins must activated and the credit is

increased by the value of coins.

4.2. Formalizing requirements using Event-B

Formal specification described in Event-B is

regarded as a highly abstracted level

description of the systems. This description

mainly consists of state variables, operations

(events) on the variables, and state invariants.

The variables are typed using set theoretic

constructs such as sets, relations, and functions.

The events are defined with their guard

conditions and substitutions (so-called before

and after predicates), which allow both

deterministic and non-deterministic state

transitions.

Event-B is appropriate to describe

requirements of reactive systems. Services are

specified in terms of events with high-level

operational definition of state changes by

guarded substitutions. An event is made of two

elements: (1) a guard that states the necessary

conditions for the event to occur, and (2) a

substitution that defines the state transition

associated with the event. The semantics of the

events define the overall results of the

executions; therefore, represent pre-conditions

and post-conditions of the services.

The Rodin tool supports not only describing

but also verifying Event-B models. In

particular, it has a capable of checking the

internal consistency. This capability is provided

by Proof Obligation Animator and Prover [5],

which are included in the Rodin tool. The

animator generates verification conditions as

proof obligations. By discharging such

verification conditions, we could show the

consistency of the specification.

Fig. 2 demonstrates a specification of the

vending machine in Event-B. Variable itemList

defines a set of items that are currently

available to be dispensed. It has an abstract data

type namely ITEMS. The variable numCup

holds the number of cups in the itemList. Its

type is an arbitrary set of non-negative integer.

The variable amount defines the total of money

deposited so far and available to make a

purchase. Its type is an arbitrary set of non-

negative float.

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 24

External behaviors are specified in terms of

events in Event-B namely switch-on, switch-

off, insert, restock, and dispense. Set operations

(e.g. union, set minus) are used to describe

what the system behaves when an item is

restocked or dispensed. A mechanism to add an

item into set avail and remove the

corresponding item from the set has not been

described. Also, the specification describes

what happens when the customers insert cash or

credit; however, how to recognize them and

compute the total deposited money is

postponed to describing the design.

The specification could be also described in

any model-based languages VDM or Z because

they also provide rich notions like set, relation,

and function. In this paper, we adopt Event-B

because Event-B models are event-driven

models, which are close to reactive systems.

4.3. Validating formal requirements

We develop an animator for Event-B

specification to give a visualization of the

specified system’s behavior. This assists the

analyzers, users and stake-holders to validate

formal specifications against informal

requirements by demonstration of state

transitions and stimulus – response behaviors of

the target systems in the combination with their

environments. While animating the specified

system’s behavior, the users give stimulus as

they are the target system’s environment.

Fig.2: Specification of Vending Machine

Communication between the animator and

the users is described in the following steps:

1. Starting at the initialization, the animator

enumerates all possible values for the

constants and variables of the specification

that satisfy the initialization and the

invariant to compute the set of initial states.

2. The animator prompts the users to enter a

stimulus

3. The animator finds all possible values for

event parameters of an individual event to

evaluate the guard of that event. If the guard

holds in the given state, the animator

computes the effect of the event based on

substitution of that event. This computation

produces a new state of the system.

4. The users check the actual results which is

produced by the animator with respect to

expected results.

5. Steps 2, 3 and 4 are repeated until the users

want to stop the animation.

Fig.3 illustrates the output of animating the

specification of VM in Fig.2. States are

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 25

presented by values of variable itemList,

numCup and amount. For example, the initial

state of the VM is ({a,b}, (0,0),0). This means

the VM provides two kinds of products namely

a and b. In the initial state, the number of

product a is 0 and that of product b is also 0.

Next, the users enter restock a as a stimulus

sent from the environment. Then, the animator

provides a new state ({a},(1,0),0). In this state,

the number of product a is 1.

Fig.3: Animation of VM's behaviors

By discharging proof obligations with

support of Rodin prover and validating the

behaviors with support of animator, we could

show the consistency and sufficiency of the

formal specification.

5. Checking design against formal

specification

Specifications of reactive systems generally

describe the desirable properties and the

external behaviors of the systems based on the

mathematical data structures using notions of

set, relation, and function as mentioned in

section 4. Contrarily, the designs present

internal behaviors of reactive systems. They

show details how to implement the system

services.

Designs must be close to the

implementation. The mathematical data

structures must be replaced by the data

structures implementable on a computer and

under-specified design decisions must be

introduced. Generally, designs of reactive

systems describe implementation of functions

which realize the observable behaviors

appearing in the specifications. In this

framework, we present the designs of reactive

systems described in appropriate specification

languages - Promela. To verify the design of

reactive systems, environment models are

important; they describe possible entities and

behaviors in communication with the target

system. The environment model of reactive

systems is also presented here. We use a simple

example, a vending machine, to demonstrate

the specifications, the designs, and the

environments of reactive systems.

5.1. Describing design in Promela

We assume that the design only defines a set

of service functions, it cannot operate by itself.

To operate it, we need an environment which

calls functions of the reactive system.

Therefore, the design needs to be verified in the

combination with their environments. We also

present the environment model and the

combination model.

Fig.4: Design in Promela

Designs of the vending machine can be

straightforwardly described in Promela. The

abstract data structures are replaced by the

implementable data structures, e.g. array,

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 26

record type. The behaviors are described using

statements of Promela, e.g. expressions,

assignment statements. The execution of the

statement may change the value of variables.

Additional variables and constants may be

introduced to explicitly describe statements that

must be performed to detect cash and credit for

computing the total deposited money. Fig. 4

demonstrates a detailed design of the vending

machine. In the example, variables having

abstract types in the specification, e.g. itemList

are replaced by variables having concrete types

in the design, e.g. ITEM avail[1000]. New

constants are introduced, e.g. CENT is used in

the case that a one cent coin is inserted. Design

decisions on how to add a new item into the

order set and to remove one from the

corresponding position are explicitly described

based on the implementable data structures and

the control structures, e.g. loop and selection

structures.

We can see a gap between the specifications

and the designs. The observable behaviors

appearing in the specifications are realized by

the optimized behaviors appearing in the

designs. The specifications can be described in

a declarative manner whereas the design can be

described in an imperative manner. Our

objective is to verify the conformance between

such specifications and designs by using a

simulation relation between them.

5.2. Communication of system and

environment

Fig. 4 illustrates the overall structure of the

design (left) and the environment (right) of the

reactive systems. The design defines data

structures and a collection of inline functions; it

cannot operate by itself. To operate it, we need

an environment which calls the functions of the

target system. Essentially, the reactive systems

need to be verified in the combination with

their environments.

The environment defines entities such as items,

coins and a sequence of function calls to the

target system.

Fig.5. Design and Enviroment in Promela

By combining the design and the

environment, we can make a closed system

which can operate by itself. We call this a

combination model. In terms of Promela, a

combination model can be obtained by

including the Promela code of the design into

that of the environment.

As explained later, the environment is

constructed from the specification, and input to

Spin to check the simulation relation. A

combination of a design and an environment

describes the execution of the design according

to the environment.

5.3. Approach

The verification technique used in the

framework is model checking. We check the

conformance of two models based on the

simulation relation between them. In particular,

we check whether the design simulates the

specification. As demonstrated in Fig. 2, the

specification defines state variables, invariants

and events which trigger state transitions.

Formally, the execution of the specification is

represented as an LTS. Also, Fig. 5 (left)

describes variables and functions appearing in

the design in Promela. The variables represent

information about the system (states) at certain

moments. The execution of statements changes

the values of variables. Therefore, the design

can be interpreted as an LTS if we consider that

the variables are states and each function call is

a label to make transitions on the states. In this

framework, we apply model checking to verify

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 27

the simulation between two LTSs. Even though

there exists a gap between the specification and

the design, our framework can verify the

correspondence between state transitions, or

simulation relation, of the specification and the

design. Specifically, each state transition in the

specification leads to a function call, which in

turn triggers multiple state transitions in the

design; after these state transitions, the design

reaches a state where the verification conditions

are asserted.

If no counter-example is found, we say the

design conforms to the formal specification

within the input bounds. For more details we

refer the reader to [11].

6. Verifying implementation against formal

specification

Specification, Design and Implementation is

three main artifacts of every software

development. The specification is the highest

abstract level description of software. It

generally includes desirable properties and

external behaviors of the system. The design is

more detailed than the specification. It includes

internal behaviors. It is a model of the

implementation, that is, it describes a solution

to realize the observable behaviors appearing in

the specification. The implementation is the

most concrete. It is built by realizing the design

in concrete programming languages. In section

4, we already present an approach to ensure that

the design conforms to the specification. This

section presents an approach to verify the

implementation against the specification by

applying the model-based testing technique.

As mentioned earlier, reactive systems do

not operate by themselves but in combination

with their environments. The stimulus or events

from the environment trigger the target system's

functions or services. Each event may have

additional parameters and may trigger

additional events. Each event usually changes

the run-time states of the system. Therefore, to

guarantee some level of correctness of a

reactive system, we need to test it with all many

as possible the number of sequences of events

(test scenarios) together with the possible

values of event parameters. However, the

number of test cases grows exponentially by the

length of the events and the size of the

parameters' domains, so testing reactive

systems is challenging. We need an efficient

and scalable approach to reduce the number of

test cases.

For critical reactive systems, their

requirements are usually specified using formal

notation, e.g. Event-B specifications. In our

framework, we propose a model-based testing

approach [13] where models are Event-B

specifications. Our approach provides system

developers a skeleton that can generate test

scenarios which contain both input values and

expected results. The skeleton acts as a test

environment and a test driver that exercises the

system under test (SUT) and reports bugs if the

actual results are different from the expected

ones.

Of course, there are other techniques such as

model checking or formal verification to

guarantee some correctness properties of

reactive systems. However, testing is still a

widely applied in practice, because the formal

approaches are only applicable for certain

classes of programs and correctness properties.

In particular, our problem statements and

approach are summarized as follows. Given an

Event-B specification as shown in Fig.2 and an

implementation of a reactive system, also called

system under test (SUT) as shown in Fig.6,

check if all representative behaviors of the

specification are correctly implemented in the

SUT. Here the representative behaviors are the

set of different sequences of events with their

representative input values.

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 28

We know, Event-B model may include

abstract types and infinite range of values. To

generate sequences of events, firstly, abstract

types in Event-B must be replaced by concrete

types. Also, types having infinite ranges of

values like Int and Nat must be restricted as

small ranges. This step is to restrict the original

Event-B specification to make a so called

specification for test (SfT). The technique that

we use is based on representative values from

equivalence class partitioning, a popular black-

boxed testing technique [13], which is effective

and suitable in our context as we will explain in

more details in the next section. Secondly, we

build a labeled transition system (LTS) of the

state spaces from the restricted specification.

Finally, the paths of the LTS are used to build

test cases, which contain both test inputs and

expected results for assertions. For more details

we refer the reader to [12].

7. Experiments

We have illustrated the specification, the

design and the implementation of the vending

machine partially in Fig. 2, 4 and 5,

respectively. In the framework, bounds are set

for the verification by introducing finite ranges

of variable values in the Event-B specification.

In practical applications of the vending

machines, the maximum number of available

items is given for each machine. Supposing that

a domain knowledge database of vending

machines shows 3 kinds of items available for

customers to be bought such as water, tea,

coffee, and 200 for each. Such kind of vending

machines should accept quarter, dollar as input

before selecting any item. Based on this domain

knowledge database, we restrict sets as below:

ITEM in {w(water),t(tea),c(coffee)}

PRICE in {$1}

COIN in {Q(QUARTER),D(DOLLAR)}

AMOUNT in {$0.25, $0.5, $1}

MAXCUP in [0..200]

Table 1: Results outputted by Spin

These ranges of values are appropriate in

practical applications of vending machines. All

experiments are conducted on Intel (R) Core

(TM) i5 Processor at 2.67GHz running

Windows 10. In verification of the design,

verification results outputted by Spin are shown

in Table 1. Here, values in column ``Size of

Ranges'' express bounds of the verification.

Column ``LTS Generation'' shows statistics of

the execution sequence generator. Columns

``\#State'', and ``\#Trans'' present the number of

distinct states and that of transitions appearing

in the execution sequences, each transition

corresponds to a function call; column ``Time''

present the time taken (s) for the generation.

Column ``Model Checking'' presents statistics

of the model checker including total actual

memory usage, the time taken (s), and the

verification result in which \surd indicates

the verification has been completed.

Case No.1 is conducted with number of

available items ranging in [0..50]; this allows to

restock 10 slots of products and 5 products in

each slot. Case No.2 corresponds 20 slots and

10 products in each slot. These ranges are

appropriate in practical applications of the

vending machines.

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 29

Experiment results of checking the

implementation against the formal specification

of VM are shown in Table 2. In all cases of our

experiment, memory usage is minimal (M).

Traces of the test show that about 800

invocations are tested per second and every

state and invocation are covered in the test. The

test is executed infinitely if no error is detected.

This is due to unlimited nature of reactive

system, which is caused by unbounded length

of the test sequences. The test is interrupted

immediately after the first error is detected and

the test returns a violation assertion.

 Table 2: Results outputted by Test Driver

Systems Mem(Mb) State

Cover.

Arc

Cover.

Result

1 VM-Ver1 M N/A N/A 1 error

2 VM-Ver2 M 100% 100% 0 error

The experiment #1 are executed infinitely.

The experiment #2 returns a violation assertion.

Following the trace shown with the error, we

could easily detect bugs in implementation of

service select item for Vending Machines.

Memory usage and performance are very good

to decrease cost of the test.

We asked the engineers to intentionally add

some bugs into versions of Vending Machine.

Then, we test these versions using the same test

code. All bugs are detected in a short time.

Types of bugs could be detected by our test

code as below:

 Conditions enabling services and result of

individual services of SUT is not corrected

with respect to its specification. For

example, one version of VM allows the

customers to select an item when the credit

is smaller than the price of the item to be

bought.

 Combination of services does not operate

correctly with respect to its specification.

For example, the results of insert money

and select item to be bought are not

appropriate inputs for dispense item.

8. Discussion

This is a highly automatic framework for

software verification. In this framework, we

provide an animator, a generator, and a test

driver. Firstly, the animator is used to animate

the behaviors of the reactive systems; therefore,

it supports validating the behaviors of reactive

systems. Secondly, the generator is used to

generate the environment and assertions from

the formal specification. The environment and

assertions are then inputted into Spin model

checker for verification of the design.

Moreover, the generator is also used to generate

test cases and test oracles which are inputs for

verification of the implementation. Finally, the

test driver is used to execute test cases on the

implementation and compare to test oracles.

From results of case studies presented in

[12] and [13], we found that the framework

could be straightforwardly applied to verify

various reactive systems (such as operating

systems, bank ATMs, elevators) where the

designs described in Promela and their formal

specifications described in Event-B. Even

though this framework has a limitation of the

model checking; we considered that essential

behaviors of the reactive systems could be still

verified successfully when we use reasonable

restrictions for the sets. This shows

applicability of our framework in verification

of reactive systems.

9. Conclusion

We present an approach for developing and

ensuring the quality of software based on the

formal specification of requirements. In this

framework, we combine animation and theorem

proving to improve the quality of the formal

specification. Therefore, we could easily

validate the requirements and ensure the

Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 30

consistency of the requirements. Based on such

confident formal specification, we apply model

checking technique to verify the design and

apply testing technique to verify the

implementation. We provide an animator, a

generator and a driver to automate steps in this

framework. This framework adapts to overall

software development processes such as

waterfall, evolution model, agile methods. This

makes it possible to systematically ensure the

quality of reactive systems based on the

confident specification with high automation,

adaptation, and practicality.

References

[1] G. Klein, J. Andronick, K. Elphinstone, G. Heiser,

D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R.

Kolanski, M. Norrish, T. Sewell, H. Tuch, and S.

Winwood (2010). seL4: Formal verification of an

operatingsystem kernel,” Communications of the

ACM, vol. 53, no. 6, pp. 107– 115.

[2] M. Leuschel and M. Butler (2008), “ProB: An

automated analysis toolset for the B method,”

International Journal on Software Tools for

Technology Transfer, vol.10, no.2, pp.185–

203.

[3] P. Matos, B. Fischer, and J. Marques-Silva (2009),

“A lazy unbounded model checker for Event-B,” in

Formal Methods and Software Engineering, Lecture

Notes in Computer Science, vol.5885, 485-503,

2009.

[4] M.P.E. Heimdahl and D. George (2004). Test-suite

reduction for model based tests: effects on test

quality and implications for testing. Proceedings of

the 19th IEEE International Conference on

Automated Software Engineering. Linz, Austria

[5] Jean-Raymond Abrial (2010). Modeling in Event-B:

system and software engineering. Cambridge Univ

Press.

[6] Andreas Muller (2009). VDM the vienna

development method. Bachelor thesis in ”Formal

Methods in Software Engineering”, Johannes Kepler

University Linz.

[7] Gerard ORegan (2013). Z formal specification

language. In Mathematics in Computing,

pages 109{122. Springer London.

[8] Gerand J. Holzmann (2004). The SPIN Model

Checker – primer and reference manual. Addison –

Wesley.

[9] R. Venkatesh, U. Shrotri, G. M. Krishna and S.

Agrawal (2014), "EDT: A specification notation for

reactive systems". Design, Automation & Test in

Europe Conference & Exhibition, pp. 1-6, doi:

10.7873.

[10] J. Fernandes, J. B. Jørgensen, S. Tjell (2007).

Requirements Engineering for Reactive Systems:

Coloured Petri Nets for an Elevator Controller. The

14th Asia-Pacific Software Engineering Conference

(APSEC’07).

[11] Dieu-Huong Vu, Yuki Chiba, Kenro Yatake,

Toshiaki Aoki (2015). A Framework for Verifying

the Conformance of Design to Its Formal

Specifications. IEICE Trans. Inf. Syst. Vol.98-D,

no.6, pp.1137—1149.

[12] Dieu Huong Vu, Anh Hoang Truong, Yuki Chiba,

Toshiaki Aoki (2017). Automated testing reactive

systems from Event-B model. 4th NAFOSTED

Conference on Information and Computer Science,

2017, pp. 207-212, doi:

10.1109/NAFOSTED.2017.8108065.

[13] Frederic Dadeau, Kalou Cabrera Castillos, and

Regis Tissot (2012). Scenario based testing using

symbolic animation of B models. Software Testing,

Verification and Reliability, 22(6):407-434.

[14] Nadeem Akhtar, Malik M. Saad Missen (2014).

Contribution to the Formal Specification and

Verification of a Multi-Agent Robotic System.

European Journal of Scientific Research ISSN 1450-

216X / 1450-202X Vol.117 No.1, pp. 35-55.

[15] Phillip A. Laplante (2017). Requirements

Engineering for Software and Systems. ISBN

9781138196117 by Auerbach Publications. 400

Pages 95 B/W Illustrations.

[16] Luca A., Anna I., Kim G. L., and Jiri S (2011).

Reactive system modeling specification and

verification. Cambridge University Press. ISBN

978051181410.

https://ieeexplore.ieee.org/author/37281766900
https://ieeexplore.ieee.org/author/37281769900
https://www.semanticscholar.org/author/J.-Fernandes/144142003
https://www.semanticscholar.org/author/J.-B.-J%C3%B8rgensen/1402990188
https://www.semanticscholar.org/author/S.-Tjell/2193131
https://www.routledge.com/search?author=Phillip%20A.%20Laplante

