
Vũ Diệu Hương / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(48) (2021) 19-30 19 

A verification framework for specification centered developments 
 

Một khung làm việc kiểm chứng cho quy trình phát triển phần mềm lấy đặc tả làm trung tâm 

 
Vũ Diệu Hương* 

Vu Dieu Huong* 

 

Information Technology Department, Economic Information System and E-Commerce Faculty, Thuong Mai University, 

79 Ho Tung Mau, Hanoi, Vietnam 

Văn phòng Công nghệ Thông tin, Khoa Thương mại Điền tử và hệ thống Thông tin Kinh tế, Trường Đại học Thương 

mại, 79 Hồ Tùng Mậu, Hà Nội, Việt Nam 

 

 (Ngày nhận bài: 18/6/2021, ngày phản biện xong: 19/8/2021, ngày chấp nhận đăng: 17/10/2021) 

Abstract  

Requirement specifications are initial inputs of every software development process. Referring to the specification is 

frequently needed through the software development phases. Because the specification has such a tremendously 

important role in the software process, its quality should be ensured before it is used to drive life – cycle activities. Once 

the quality of the specification is ensured, it is reliable input to verify the other artifacts outputted from various 

development activities like design and implementation. In this paper, we propose a verification framework for 

specification centered developments. In this framework, we firstly focus on improve the quality of specification then 

use such high-quality specification to drive the verification of the design and the implementation. This framework could 

be applied in domain of reactive systems with high automation, adaptation, and practicality.  
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Tóm tắt  

Đặc tả yêu cầu là đầu vào khởi đầu của mọi tiến trình phát triển phần mềm. Tham chiếu tới đặc tả là cần thiết ở mọi pha 

trong tiến trình phát triển phần mềm. Vì đặc tả có vai trò đặc biệt quan trọng như vậy, chất lượng của đặc tả nên được 

đảm bảo trước khi nó được sử dụng để dẫn xuất mọi hoạt động của vòng đời phát triển phần mềm.  Một khi chất lượng 

của đặc tả đã được đảm bảo, nó sẽ là một đầu vào tin cậy để kiểm chứng các chế tác  được cung cấp bởi các hoat động 

khác nhau trong vòng đời phát triển phần mềm, ví dụ như mô hình thiết kế, chương trình. Trong bài báo này, chúng tôi 

đề xuất một khung làm việc kiểm chứng cho tiến trình phát triển phần mềm lấy đặc tả làm trung tâm. Trong khung làm 

việc này, đầu tiên chúng ta sẽ tập trung vào cải tiến chất lượng của đặc tả rồi sử dụng đặc tả có chất lượng được đảm 

bảo này để dẫn xuất cho hoạt động kiểm chứng thiết kế và chương trình. Khung làm việc này có thể được áp dụng trong 

miền các hệ thống phản ứng với tính tự động hóa cao, tính thích nghi tốt và tính thực hành cao. 

Từ khóa:  kiểm chứng phần mềm; kiểm chứng hình thức; phát triển phần mềm lấy đặc tả làm trung tâm; các hệ thống 

phản ứng.   
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1. Introduction 

Requirement Specifications [15] 

(Specifications for short) describe expected 

(external) behaviors of the software. They also 

describe nonfunctional requirements, design 

constraints and other factors necessary to 

provide a complete and comprehensive 

description of the requirements for the 

software. 

Specifications are initial inputs of every 

software development process. Moreover, they 

are involved in every phase of the development 

processes. Referring to the specification is 

frequently needed through the software 

development phases. In other words, various 

development activities are based on 

specifications: design, implementation, testing, 

maintaining. Specifications are used as the 

basis for providing and ensuring the quality of 

designs and implementations. 

Because the specification has such a 

tremendously important role in the software 

process, its quality should be ensured before it 

is used to drive life – cycle activities. Once the 

quality of the specification is ensured, it is 

reliable input to verify the other artifacts 

outputted from various development activities 

like design and implementation. 

Reactive system [16] (RS for short) is a 

system that continuously interact with its 

environment by responding to external stimuli. 

For example, vending machines, elevator, and 

operating systems are reactive systems. The 

environment of a vending machine includes 

customers who want to buy products restocked 

in that vending machine; and, the environment 

of an operating system includes software 

applications running on that operating system. 

Several reactive systems are considered as 

safety-critical (e.g., operating systems for 

mobile vehicles). Such kind of systems should 

be seriously verified because their errors cause 

highly destructive effects on the human life and 

the assets.  

Quality improvement for RS in a unified 

verification process is still a great challenge. 

What we need for such verification process 

includes: (i) a high-quality specification which 

is consistent and validated against user 

requirements; (ii) this specification is used as a 

confident input to formally verify both of the 

design and the implementation. We know that 

there exists a gap between the specification and 

the design. The specification defines abstract 

data structures, whereas the design defines 

implementable data structure. Also, the 

specification defines results of operations, 

while the design defines details of how to make 

the results. There are two main approaches for 

verification of every software including 

reactive systems. In the first approach, we can 

describe the specification in an appropriate 

specification language like Z [7], VDM 

(Vienna Development Method) [6], Event-B 

[5]; then, we derive the behaviors of the design 

from the higher-level specification as adopted 

in [5]. The problem of this approach is that in 

order to represent highly optimized behaviors 

of reactive systems, we need to use various 

complex data structures and control structures. 

Therefore, directly deriving these behaviors 

from the abstract specification is generally very 

hard. In the second approach, we can use 

imperative specification languages like Promela 

[8] to describe the design. This facilitates 

describing the highly optimized behavior by 

using various data structures and control 

structures. In this approach, the specification or 

the properties we want to check can be 

described in temporal logic. However, we 

consider that temporal logic formulae, which 

allows us to describe properties about 

invariants on some variables and the relative 

order of event calls, but are not adequate for 

describing the important properties of reactive 
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system concern with the pre-condition and the 

post-condition of each event invoked from their 

environment. Moreover, we could not ensure 

the consistency of these properties in the 

temporal logic formulae. Also, such formulae 

are not appropriate inputs for verification of the 

implementation. 

Our idea is using the rich notions (e.g. sets 

and relations) in the formal specification 

languages like Event-B, we could easily 

describe properties we want to verify. 

Therefore, we intendedly use Event-B to 

facilitate describing properties of the reactive 

system. In Event-B, one can describe the 

system as a set of events and the behavior of 

each event can be specified as pre-conditions 

and post-conditions using the rich notions. It 

also provides a facility to verify the consistency 

and the correctness of the properties. This 

results high-quality specifications. Furthermore, 

such specifications are appropriate inputs to 

automated verify the implementation. 

For verification of the design, our idea is to 

describe the design in imperative specification 

languages like Promela, which is easy to 

represent the design. We think that dealing with 

the specification and the design based on the 

different specification languages is appropriate 

for systems in which there exists a big gap 

between the specification and the design like 

the reactive systems. Then, we verify the design 

against the specification. In this case, we must 

deal with the difference between the language 

used to describe the specification and that for 

the design. 

In this paper, we propose a verification 

framework for Specification Centered 

Developments in which Specifications are 

verified first; Specifications are used as the 

inputs for ensuring the quality of designs and 

implementations. In our framework, we intend 

to use different specification languages for the 

specification and the design to facilitate the 

description of them. That is, Event-B is adopted 

for the specification and Promela for the 

design. We deal with the difference between 

specification languages for the specification 

and the design by common semantics, label 

transition systems (LTSs), and correspondences 

between state transitions given by mappings 

from syntactic elements in the former to those 

in the latter. This approach is also applied to 

deal with the gap between the specification and 

the implementation. Therefore, our framework 

accepts any programming language used in the 

implementation. In other words, the 

specification described in Event-B is also 

appropriate input to verify the implementation. 

This makes it possible to systematically ensure 

the quality of reactive systems based on the 

confident specification with high automation, 

adaptation, and practicality. 

2. Related works 

Using formal specifications as inputs for 

software verification is presented in [1] and 

[14]. [1] presents an approach to verify the OS 

kernel by applying theorem proving. Theorem 

proving can be used to verify the infinite 

systems; but, it generally requires a lot of 

interactive proofs. [14] applied the model 

checking technique to verify the correctness 

properties of safety and liveness of target 

systems. In our workflow, we use model 

checking combing with prover tools of Event-

B. Although ranges are bounded due to the 

limitation of model checking; however, we are 

able to improve quality of the properties 

checked and get completely automatic 

verification. Therefore, we have a high degree 

of confidence in the verification results. 

Animating Event-B models is implemented in 

ProB [2] and Eboc [3]. In these approaches, the 

target models are described in Event-B. ProB 

and Eboc directly check the target models 
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against the internal consistency. We use Rodin 

prover of Event-B to ensure the internal 

consistency and use our animator to validate. 

We use our own tool to generate the LTS of the 

Event-B specification. Formal Specification 

Centered Development Process is presented in 

[4]. However, this work applies model 

checking technique to give test suite from the 

formal specification. Our framework uses the 

formal specification for not only verification of 

the design but also that of the implementation. 

3. Verification framework 

Our framework is illustrated in Fig.1. Initial 

input of the framework is a statement of user 

requirements. That is an informal description of 

user requirements. Originally, the user 

requirements are usually described in natural 

languages. Due to the ambiguity of natural 

languages, such informal descriptions could 

lack consistency. Moreover, they are not proper 

inputs for the formal verification. Therefore, we 

need formal specifications replacing for the 

informal ones to drive life - cycle activities 

including verification of the designs and the 

implementations. The quality of formal 

specifications should be ensured before we use 

them to drive life - cycle activities. 

 

Fig.1: Verification Framework (steps) 

Three verification activities are shown in the 

Fig.1. The first activity is formalizing and 

validating the requirements. This step provides 

the high-quality formal specification of 

requirements. The second activity is checking 

the design against the formal specification. 

This step uses the formal specification as a 

reliable input to verify the design by applying 

model checking technique [8]. The last activity 

is checking the implementation against the 

formal specification. Also, this step uses the 

formal specification as a reliable input to verify 

the implementation by applying testing 

technique [13]. As mentioned earlier, this 

framework adapts to overall software 

development processes such water fall, 

evolution model, agile methods. The 

verification is an ongoing process and the 

verification activities are integrated in the 

development activities. Once, both of the 

design and the implementation conform to the 

specification, we are confident that the 

implementation also conforms to the design. 

Actually, we could show the conformance 

between the implementation and the design by 

applying the same approach. 

4. Formalizing and validating requirements 

in Event-B 

4.1. Requirements of reactive systems 

Features or aspects of reactive systems are 

commonly mentioned as (i) external behavior 

or functional requirements, (ii) properties or 

non-functional requirements, (iii) 

communication or links between controllers 

and physical entities like sensors and actuator 

[9], and (iv) communication  between reactive 

systems and their environments [10].  

Our framework focuses on verifying quality 

of Specification, Design and Implementation 

for reactive system. This section aims at how to 

provide a high-quality specification. In our 

point of view, a high-quality specification is 
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one that (1) it has sufficient requirements for 

user’s needs and (2) it is well structured, 

unambiguous, consistent, readable, and easy to 

review and validate. 

The requirements are generally divided into 

functional requirements and non-functional 

requirements (i.e. constraints). In the 

specification of reactive systems, we focus on 

the behavioral aspect of target systems in 

communication with their environments. Such 

aspect concerns with system services and 

constraints on service operation in 

combination with the environment. For 

example, services of Vending Machine (VM) 

include switch on, switch off, restock an item 

into VM, collect coins, and dispense an item to 

the customers. A few of constraints on these 

services are as below: 

 Pushing a button shall vend an item of the 

type corresponding to that button 

 The machine shall retain exactly item cost 

for each item vended 

 The machine shall return all deposited 

money in excess of item cost 

 The machine shall flash the light for a 

selected item while vending is in progress to 

indicate acceptance of a selection to the 

buyer. 

Constraints are divided into two kinds of 

conditions. The first one is pre-condition, that 

is, the condition under which a service is 

activated. Another one is post-condition, that is 

action or result of service execution. For 

example, when the customer inserts a coin, 

collected coins must activated and the credit is 

increased by the value of coins. 

4.2. Formalizing requirements using Event-B 

Formal specification described in Event-B is 

regarded as a highly abstracted level 

description of the systems. This description 

mainly consists of state variables, operations 

(events) on the variables, and state invariants. 

The variables are typed using set theoretic 

constructs such as sets, relations, and functions. 

The events are defined with their guard 

conditions and substitutions (so-called before 

and after predicates), which allow both 

deterministic and non-deterministic state 

transitions. 

Event-B is appropriate to describe 

requirements of reactive systems. Services are 

specified in terms of events with high-level 

operational definition of state changes by 

guarded substitutions. An event is made of two 

elements: (1) a guard that states the necessary 

conditions for the event to occur, and (2) a 

substitution that defines the state transition 

associated with the event. The semantics of the 

events define the overall results of the 

executions; therefore, represent pre-conditions 

and post-conditions of the services. 

The Rodin tool supports not only describing 

but also verifying Event-B models. In 

particular, it has a capable of checking the 

internal consistency. This capability is provided 

by Proof Obligation Animator and Prover [5], 

which are included in the Rodin tool. The 

animator generates verification conditions as 

proof obligations. By discharging such 

verification conditions, we could show the 

consistency of the specification. 

Fig. 2 demonstrates a specification of the 

vending machine in Event-B. Variable itemList 

defines a set of items that are currently 

available to be dispensed. It has an abstract data 

type namely ITEMS. The variable numCup 

holds the number of cups in the itemList. Its 

type is an arbitrary set of non-negative integer. 

The variable amount defines the total of money 

deposited so far and available to make a 

purchase. Its type is an arbitrary set of non-

negative float. 
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External behaviors are specified in terms of 

events in Event-B namely switch-on, switch-

off, insert, restock, and dispense. Set operations 

(e.g. union, set minus) are used to describe 

what the system behaves when an item is 

restocked or dispensed. A mechanism to add an 

item into set avail and remove the 

corresponding item from the set has not been 

described. Also, the specification describes 

what happens when the customers insert cash or 

credit; however, how to recognize them and 

compute the total deposited money is 

postponed to describing the design. 

The specification could be also described in 

any model-based languages VDM or Z because 

they also provide rich notions like set, relation, 

and function. In this paper, we adopt Event-B 

because Event-B models are event-driven 

models, which are close to reactive systems. 

4.3. Validating formal requirements 

We develop an animator for Event-B 

specification to give a visualization of the 

specified system’s behavior. This assists the 

analyzers, users and stake-holders to validate 

formal specifications against informal 

requirements by demonstration of state 

transitions and stimulus – response behaviors of 

the target systems in the combination with their 

environments. While animating the specified 

system’s behavior, the users give stimulus as 

they are the target system’s environment. 

 

Fig.2: Specification of Vending Machine 

Communication between the animator and 

the users is described in the following steps: 

1. Starting at the initialization, the animator 

enumerates all possible values for the 

constants and variables of the specification 

that satisfy the initialization and the 

invariant to compute the set of initial states. 

2. The animator prompts the users to enter a 

stimulus 

3. The animator finds all possible values for 

event parameters of an individual event to 

evaluate the guard of that event. If the guard 

holds in the given state, the animator 

computes the effect of the event based on 

substitution of that event. This computation 

produces a new state of the system. 

4. The users check the actual results which is 

produced by the animator with respect to 

expected results. 

5. Steps 2, 3 and 4 are repeated until the users 

want to stop the animation. 

Fig.3 illustrates the output of animating the 

specification of VM in Fig.2. States are 
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presented by values of variable itemList, 

numCup and amount. For example, the initial 

state of the VM is ({a,b}, (0,0),0). This means 

the VM provides two kinds of products namely 

a and b. In the initial state, the number of 

product a is 0 and that of product b is also 0. 

Next, the users enter restock a as a stimulus 

sent from the environment. Then, the animator 

provides a new state ({a},(1,0),0). In this state, 

the number of product a is 1. 

 

Fig.3: Animation of VM's behaviors 

By discharging proof obligations with 

support of Rodin prover and validating the 

behaviors with support of animator, we could 

show the consistency and sufficiency of the 

formal specification. 

5. Checking design against formal 

specification 

Specifications of reactive systems generally 

describe the desirable properties and the 

external behaviors of the systems based on the 

mathematical data structures using notions of 

set, relation, and function as mentioned in 

section 4. Contrarily, the designs present 

internal behaviors of reactive systems. They 

show details how to implement the system 

services. 

Designs must be close to the 

implementation. The mathematical data 

structures must be replaced by the data 

structures implementable on a computer and 

under-specified design decisions must be 

introduced. Generally, designs of reactive 

systems describe implementation of functions 

which realize the observable behaviors 

appearing in the specifications. In this 

framework, we present the designs of reactive 

systems described in appropriate specification 

languages - Promela. To verify the design of 

reactive systems, environment models are 

important; they describe possible entities and 

behaviors in communication with the target 

system. The environment model of reactive 

systems is also presented here. We use a simple 

example, a vending machine, to demonstrate 

the specifications, the designs, and the 

environments of reactive systems. 

5.1. Describing design in Promela 

We assume that the design only defines a set 

of service functions, it cannot operate by itself. 

To operate it, we need an environment which 

calls functions of the reactive system. 

Therefore, the design needs to be verified in the 

combination with their environments. We also 

present the environment model and the 

combination model. 

 

Fig.4: Design in Promela 

Designs of the vending machine can be 

straightforwardly described in Promela. The 

abstract data structures are replaced by the 

implementable data structures, e.g. array, 
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record type. The behaviors are described using 

statements of Promela, e.g. expressions, 

assignment statements. The execution of the 

statement may change the value of variables. 

Additional variables and constants may be 

introduced to explicitly describe statements that 

must be performed to detect cash and credit for 

computing the total deposited money. Fig. 4 

demonstrates a detailed design of the vending 

machine. In the example, variables having 

abstract types in the specification, e.g. itemList 

are replaced by variables having concrete types 

in the design, e.g. ITEM avail[1000]. New 

constants are introduced, e.g. CENT is used in 

the case that a one cent coin is inserted.  Design 

decisions on how to add a new item into the 

order set and to remove one from the 

corresponding position are explicitly described 

based on the implementable data structures and 

the control structures, e.g. loop and selection 

structures. 

We can see a gap between the specifications 

and the designs. The observable behaviors 

appearing in the specifications are realized by 

the optimized behaviors appearing in the 

designs. The specifications can be described in 

a declarative manner whereas the design can be 

described in an imperative manner. Our 

objective is to verify the conformance between 

such specifications and designs by using a 

simulation relation between them. 

5.2. Communication of system and 

environment 

Fig. 4 illustrates the overall structure of the 

design (left) and the environment (right) of the 

reactive systems. The design defines data 

structures and a collection of inline functions; it 

cannot operate by itself. To operate it, we need 

an environment which calls the functions of the 

target system. Essentially, the reactive systems 

need to be verified in the combination with 

their environments.  

The environment defines entities such as items, 

coins and a sequence of function calls to the 

target system. 

 

Fig.5. Design and Enviroment in Promela 

By combining the design and the 

environment, we can make a closed system 

which can operate by itself. We call this a 

combination model. In terms of Promela, a 

combination model can be obtained by 

including the Promela code of the design into 

that of the environment. 

As explained later, the environment is 

constructed from the specification, and input to 

Spin to check the simulation relation. A 

combination of a design and an environment 

describes the execution of the design according 

to the environment. 

5.3. Approach 

The verification technique used in the 

framework is model checking. We check the 

conformance of two models based on the 

simulation relation between them. In particular, 

we check whether the design simulates the 

specification. As demonstrated in Fig. 2, the 

specification defines state variables, invariants 

and events which trigger state transitions. 

Formally, the execution of the specification is 

represented as an LTS. Also, Fig. 5 (left) 

describes variables and functions appearing in 

the design in Promela. The variables represent 

information about the system (states) at certain 

moments. The execution of statements changes 

the values of variables. Therefore, the design 

can be interpreted as an LTS if we consider that 

the variables are states and each function call is 

a label to make transitions on the states. In this 

framework, we apply model checking to verify 
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the simulation between two LTSs. Even though 

there exists a gap between the specification and 

the design, our framework can verify the 

correspondence between state transitions, or 

simulation relation, of the specification and the 

design. Specifically, each state transition in the 

specification leads to a function call, which in 

turn triggers multiple state transitions in the 

design; after these state transitions, the design 

reaches a state where the verification conditions 

are asserted.  

If no counter-example is found, we say the 

design conforms to the formal specification 

within the input bounds. For more details we 

refer the reader to [11]. 

6. Verifying implementation against formal 

specification 

Specification, Design and Implementation is 

three main artifacts of every software 

development. The specification is the highest 

abstract level description of software. It 

generally includes desirable properties and 

external behaviors of the system. The design is 

more detailed than the specification. It includes 

internal behaviors. It is a model of the 

implementation, that is, it describes a solution 

to realize the observable behaviors appearing in 

the specification. The implementation is the 

most concrete. It is built by realizing the design 

in concrete programming languages. In section 

4, we already present an approach to ensure that 

the design conforms to the specification. This 

section presents an approach to verify the 

implementation against the specification by 

applying the model-based testing technique. 

As mentioned earlier, reactive systems do 

not operate by themselves but in combination 

with their environments. The stimulus or events 

from the environment trigger the target system's 

functions or services. Each event may have 

additional parameters and may trigger 

additional events. Each event usually changes 

the run-time states of the system. Therefore, to 

guarantee some level of correctness of a 

reactive system, we need to test it with all many 

as possible the number of sequences of events 

(test scenarios) together with the possible 

values of event parameters. However, the 

number of test cases grows exponentially by the 

length of the events and the size of the 

parameters' domains, so testing reactive 

systems is challenging. We need an efficient 

and scalable approach to reduce the number of 

test cases.  

For critical reactive systems, their 

requirements are usually specified using formal 

notation, e.g.  Event-B specifications. In our 

framework, we propose a model-based testing 

approach [13] where models are Event-B 

specifications. Our approach provides system 

developers a skeleton that can generate test 

scenarios which contain both input values and 

expected results. The skeleton acts as a test 

environment and a test driver that exercises the 

system under test (SUT) and reports bugs if the 

actual results are different from the expected 

ones.  

Of course, there are other techniques such as 

model checking or formal verification to 

guarantee some correctness properties of 

reactive systems. However, testing is still a 

widely applied in practice, because the formal 

approaches are only applicable for certain 

classes of programs and correctness properties.  

In particular, our problem statements and 

approach are summarized as follows. Given an 

Event-B specification as shown in Fig.2 and an 

implementation of a reactive system, also called 

system under test (SUT) as shown in Fig.6, 

check if all representative behaviors of the 

specification are correctly implemented in the 

SUT. Here the representative behaviors are the 

set of different sequences of events with their 

representative input values.  
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We know, Event-B model may include 

abstract types and infinite range of values. To 

generate sequences of events, firstly, abstract 

types in Event-B must be replaced by concrete 

types. Also, types having infinite ranges of 

values like Int and Nat must be restricted as 

small ranges. This step is to restrict the original 

Event-B specification to make a so called 

specification for test (SfT). The technique that 

we use is based on representative values from 

equivalence class partitioning, a popular black-

boxed testing technique [13], which is effective 

and suitable in our context as we will explain in 

more details in the next section. Secondly, we 

build a labeled transition system (LTS) of the 

state spaces from the restricted specification. 

Finally, the paths of the LTS are used to build 

test cases, which contain both test inputs and 

expected results for assertions. For more details 

we refer the reader to [12]. 

 

 

7. Experiments 

We have illustrated the specification, the 

design and the implementation of the vending 

machine partially in Fig. 2, 4 and 5, 

respectively. In the framework, bounds are set 

for the verification by introducing finite ranges 

of variable values in the Event-B specification.  

In practical applications of the vending 

machines, the maximum number of available 

items is given for each machine. Supposing that 

a domain knowledge database of vending 

machines shows 3 kinds of items available for 

customers to be bought such as water, tea, 

coffee, and 200 for each. Such kind of vending 

machines should accept quarter, dollar as input 

before selecting any item. Based on this domain 

knowledge database, we restrict sets as below:  

ITEM in {w(water),t(tea),c(coffee)} 

PRICE in {$1} 

COIN in {Q(QUARTER),D(DOLLAR)} 

AMOUNT in {$0.25, $0.5, $1} 

MAXCUP in [0..200] 

Table 1: Results outputted by Spin 

 

These ranges of values are appropriate in 

practical applications of vending machines. All 

experiments are conducted on Intel (R) Core 

(TM) i5 Processor at 2.67GHz running 

Windows 10. In verification of the design, 

verification results outputted by Spin are shown 

in Table 1. Here, values in column ``Size of 

Ranges'' express bounds of the verification. 

Column ``LTS Generation'' shows statistics of 

the execution sequence generator. Columns 

``\#State'', and ``\#Trans'' present the number of 

distinct states and that of transitions appearing 

in the execution sequences, each transition 

corresponds to a function call; column ``Time'' 

present the time taken (s) for the generation. 

Column ``Model Checking'' presents statistics 

of the model checker including total actual 

memory usage, the time taken (s), and the 

verification result in which $\surd$ indicates 

the verification has been completed.  

Case No.1 is conducted with number of 

available items ranging in [0..50]; this allows to 

restock 10 slots of products and 5 products in 

each slot. Case No.2 corresponds 20 slots and 

10 products in each slot. These ranges are 

appropriate in practical applications of the 

vending machines. 
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Experiment results of checking the 

implementation against the formal specification 

of VM are shown in Table 2. In all cases of our 

experiment, memory usage is minimal (M). 

Traces of the test show that about 800 

invocations are tested per second and every 

state and invocation are covered in the test. The 

test is executed infinitely if no error is detected. 

This is due to unlimited nature of reactive 

system, which is caused by unbounded length 

of the test sequences. The test is interrupted 

immediately after the first error is detected and 

the test returns a violation assertion. 

    Table 2: Results outputted by Test Driver 

# Systems Mem(Mb) State 

Cover. 

Arc 

Cover. 

Result 

1 VM-Ver1 M N/A N/A 1 error 

2 VM-Ver2 M 100% 100% 0 error 

The experiment #1 are executed infinitely. 

The experiment #2 returns a violation assertion. 

Following the trace shown with the error, we 

could easily detect bugs in implementation of 

service select item for Vending Machines. 

Memory usage and performance are very good 

to decrease cost of the test. 

We asked the engineers to intentionally add 

some bugs into versions of Vending Machine. 

Then, we test these versions using the same test 

code. All bugs are detected in a short time. 

Types of bugs could be detected by our test 

code as below: 

 Conditions enabling services and result of 

individual services of SUT is not corrected 

with respect to its specification. For 

example, one version of VM allows the 

customers to select an item when the credit 

is smaller than the price of the item to be 

bought. 

 Combination of services does not operate 

correctly with respect to its specification. 

For example, the results of insert money 

and select item to be bought are not 

appropriate inputs for dispense item. 

8. Discussion 

This is a highly automatic framework for 

software verification. In this framework, we 

provide an animator, a generator, and a test 

driver. Firstly, the animator is used to animate 

the behaviors of the reactive systems; therefore, 

it supports validating the behaviors of reactive 

systems. Secondly, the generator is used to 

generate the environment and assertions from 

the formal specification. The environment and 

assertions are then inputted into Spin model 

checker for verification of the design. 

Moreover, the generator is also used to generate 

test cases and test oracles which are inputs for 

verification of the implementation. Finally, the 

test driver is used to execute test cases on the 

implementation and compare to test oracles. 

From results of case studies presented in 

[12] and [13], we found that the framework 

could be straightforwardly applied to verify 

various reactive systems (such as operating 

systems, bank ATMs, elevators) where the 

designs described in Promela and their formal 

specifications described in Event-B. Even 

though this framework has a limitation of the 

model checking; we considered that essential 

behaviors of the reactive systems could be still 

verified successfully when we use reasonable 

restrictions for the sets. This shows 

applicability of our framework in verification 

of reactive systems. 

9. Conclusion 

We present an approach for developing and 

ensuring the quality of software based on the 

formal specification of requirements. In this 

framework, we combine animation and theorem 

proving to improve the quality of the formal 

specification. Therefore, we could easily 

validate the requirements and ensure the 
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consistency of the requirements. Based on such 

confident formal specification, we apply model 

checking technique to verify the design and 

apply testing technique to verify the 

implementation. We provide an animator, a 

generator and a driver to automate steps in this 

framework. This framework adapts to overall 

software development processes such as 

waterfall, evolution model, agile methods. This 

makes it possible to systematically ensure the 

quality of reactive systems based on the 

confident specification with high automation, 

adaptation, and practicality. 
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