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Tóm tắt  

Nhiều căn bệnh nguy hiểm hiện nay chưa có thuốc chữa trị. Theo WHO, năm 2019 bệnh tim mạch gây 9 triệu người 

chết chiếm 16% tổng số người chết của năm, ngoài ra bệnh tiểu đường và Alzheimer cũng nằm trong số các bệnh gây 

nhiều cái chết nhất. Do đó, việc tìm kiếm và phát triển các thuốc chữa bệnh hiệu quả luôn là cần thiết. Tuy nhiên, quy 

trình nghiên cứu và phát triển thuốc hiện nay tốn rất nhiều chi phí và thời gian. Để một loại thuốc mới ra đến được thị 

trường phải mất hơn 12 năm nghiên cứu và phát triển, chi phí tài chính hơn một tỉ đô la Mỹ. Vì vậy, mô phỏng máy tính 

được ứng dụng vào để tiết giảm chi phí tài chính và thời gian. Bài báo này khái quát các nguyên lý hoạt động, những 

đóng góp của ứng dụng máy tính trong nghiên cứu và phát triển thuốc. Chúng tôi cũng thảo luận những thử thách cần 

vượt qua để việc ứng dụng máy tính trong nghiên cứu và phát triển thuốc hiệu quả hơn. 

Từ khóa: Nghiên cứu thuốc; phát triển thuốc; thiết kế thuốc trên máy tính; gán phân tử; tương tác thuốc với protein. 

Abstract  

There are many diseases desperately needed treatment. In 2019, WHO reported that cardiovascular disease caused 9 

million deaths and accounted for 16% the total mortality. The report also indicated that diabetes and Alzheimer are 

among the most deathly diseases, and pharmacotherapy has been known to be among the most effective treatment 

methods to combat against diseases. Thus, demand for the new drug has been always high and urgent, unfortunately, 

traditional method for drug discovery and development is time-consuming, expensive and inefficient. It takes more than 

12 years and costs up to billions of USD to bring a new drug to patients. These drawbacks have been compensated for 

by Computer-aided drug design (CADD). This review summarizes the core working principles, the contributions, 

challenges and trends of CADD including structure-based and ligand-based drug design together with relevant 

softwares and databases of protein as well as ligands.  

Keywords: Computer - aided drug design; Structure - based drug design; Ligand - based drug design; Molecular 

docking.  
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1. Introduction 

New medication is extremely necessary 

because of many unmet medical needs such as 

cancer, cardiovascular diseases and antibiotic 

resistance. Finding drugs by following the 

traditional process is a lengthy, costly, difficult 

and inefficient process regardless of the 

advancement of biotechnology and analytical 

sciences. This process consumes over 1 billion 

dollars and takes more than 12 years to bring a 

new drug to the patients [1]. Figure 1 shows the 

workflow of the traditional process in drug 

discovery and development (DDD). 

Figure 1: Traditional process of drug discovery  

and development [1] 

To streamline that process, computer- aided 

drug design (CADD) has been applied widely 

in pharma and biotech companies to reduce cost 

and time involved in traditional method and 

nowadays CADD is an indispensable part of 

pharmaceutical industry [2].  

CADD has been used to find hit and lead 

compounds, which is also the goal of high - 

throughput screening (HTS). CADD sometimes 

shows more effectiveness than HTS, for 

example Doman et al. compared hit lists from 

molecular docking with HTS and reported that 

the docking hits were more druglike than those 

from HTS [3]. In traditional DDD process, a 

lead compound might be obtained out of around 

80,000 compounds and then goes through lead 

optimization to improve its bioactivities and 

reduce toxicity [4]. This long and expensive 

process can be optimized by using CADD, 

reducing number of compounds that must be 

synthesized and tested [5]. Two major 

approaches in CADD are structure-based and 

ligand-based. 

2. Structure-based drug design  

Structure–based drug design (SBDD) relies 

on structures of biological target, which is 

normally a protein whose 3D structure can be 

determined by X-ray crystallography and 

Nuclear Magnetic Resonance spectroscopy. 

Target and ligand molecules in molecular 

docking are considered as “lock - and - key”, 

where the target is the “lock” and the ligand is 

the “key”. The ligand adapts the conformation to 

achieve the best fit with the target. This fitness is 

expressed as binding modes and binding affinity 

between the target and the ligand. The ligands 

that show the highest interaction with the targets 

are selected, evaluated and ranked by scoring 

function. Figure 2 shows the simplified 

workflow of SBDD process.  

 
Figure 2: Process of structure-based drug design [6] consists of (i) choosing target molecule, (ii) preparing the ligand library, 

(iii) docking the ligands into the target to model the interaction and finally (iv) identifying hit compounds. 
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One fundamental concept in molecular 

docking is scoring functions that are used to 

rank ligand molecules based on the binding 

affinity of these molecules to the target. There 

are 4 types of scoring functions: physical based, 

empirical based, knowledge based and machine 

learning. The first three are classified as 

classical scoring functions, using linear 

regression model, whilst the latter incorporates 

nonlinear regression machine learning methods 

[7]. The force - field based scoring function 

identifies binding energy by total of bonded, 

electrostatic and van der Waals interactions [6], 

while empirical and knowledge - based 

functions calculate binding energy by 

hydrogen-bonding, ionic and apolar 

interactions, as well as desolvation and entropic 

effects [8]. Machine learning employs a variety 

of machine learning algorithms such as super 

vector machine, random forest, artificial neural 

network, and deep learning.  

3. Ligand-based drug design  

Ligand-based drug design (LBDD), on the 

other hand, relies on knowledge of certain 

ligands that show biological activities with a 

drug target. Based on structures of these 

ligands, a pharmacophore model is built. Then, 

chemical databases are scanned against the 

pharmacophore to find molecules that have 

similar structure to the pharmacophore. These 

molecules will be experimentally tested to 

confirm their biological activities, then follow 

further development phases in drug discovery 

process. Figure 3 shows the steps in LBDD 

process.   

 
Figure 3: Outline of the process in LBDD

The critical factor of LBDD is 

pharmacophore modeling. An ideal 

pharmacophore model represents all features 

that are necessary to ensure the optimal 

molecular interactions with a target [9]. Six 

pharmacophoric features used to build a 

pharmacophore are hydrogen bond donors, 

hydrogen bond acceptors, acidic centers, basic 

centers, hydrophobic regions and aromatic ring 

centroids (Figure 4) [10]. Some popular 

pharmacophore searching softwares are 

Pharmer, PharmMapper, PharmaGist and 

ZINCPharma.  

 
Figure 4: Example of an pharmacophore model [11] 
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4. Ligand and protein databases for CADD 

CADD needs ligand and target databases to 

work. Ligand databases store molecular 

features, drugs’ mechanism of action, drug 

indications, clinical data and other essential 

information of small molecules. There are 

numerous sizable chemical databases available 

today. ZINC, for example, has the greatest 

number of ligands, containing over 200 million 

3D leadlike molecules and more than 700 

million 2D structures. Chemspider, Pubchem, 

and REAXYS also have a large number of 

molecules: 88, 103 and 118 millions, 

respectively [12].  

Similarly, protein databases contain the 

essential information of protein such as 

physical, chemical and biological information, 

three-dimensional structures, fold assignments, 

active site, function, and protein - protein 

interaction. Some important databases are 

Protein Data Bank (PDB), RefSeq, UniProt, 

and IntAct. Nowadays, PDB contains about 

173,537 biological macromolecular structures 

and includes four members such as Research 

Collaboratory for Structural Bioinformatics 

Protein Data Bank (RCSB PDB), Biological 

Magnetic Resonance Data Bank (BMRB), 

Protein Data Bank in Europe (PDBe) and 

Protein Data Bank Japan (PDBj). RefSeq 

provides a comprehensive, integrated, non - 

redundant, well - annotated set of sequences, 

including 191,411,721 proteins, 35,353,412 

transcripts and 106,581 organisms. UniProt is 

also a popular of sequence databases, 

containing UniRef, UniParc and Proteomes 

with 441,942,016 sequences, 373,907,456 

sequences and 305,529 proteomes, respectively. 

IntAct focuses on protein - protein interaction, 

containing 22,037 publications, 1,130,596 

interactions and 119,281 interactors. All these 

databases are public accessed. 

5. Contributions of CADD 

CADD economizes DDD process. 

Application of CADD can save 30% the total 

cost and time invested in developing a new 

drug [13]. Research reports that CADD market 

is increasing, from $1,540.4 billion in 2018 to 

$4,878.5 billion in 2026 [14]. Nowadays, 

CADD has been extensively applied in almost 

every phase of DDD process such as  detecting 

targets, validation, lead discovery, and 

optimization and preclinical tests [15]-[17]. 

Comparing to HTS, CADD can provide 

knowledge about molecular interaction between 

proteins and ligands, therefore interaction 

merchanism [18]. 

Searching for treatment of covid-19 in 2020, 

for instance, has used CADD [19]. Ahmed et al. 

used CADD to demonstrate the potential of a 

remdesivir and its derivatives in treating  

SAR-CoV-2 infection [20]. De et al. succeeded 

in using CADD for development anti-cancer 

drugs [21]. The contributions of CADD has 

been demonstrated by the large amount of 

medicines tested with supports of CADD. Table 

1 shows some medicines that are developed 

with the support from CADD. 

Table 1: Successful medicines that have 

support from CADD 

Medicine Biological action Approval 

year 

Ref 

Captopril  An angiotensin-converting enzyme inhibitor, treat high 

blood pressure.  

1981  [22]  

Dorolamide  Inhibits carbonic anhydrase II and reduces intraocular 

pressure. To treat ocular disease or glaucoma. 

1994  [22]  

Saquinavir  Inhibits protease of rotavirus, that can inhibit one of the 

last stages of viral replication.  

1995 [22]  
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Zanamivir Inhibits neuraminidase enzyme of influenza virus, used for 

treatment of influenza A or B viruses.  

1999 [22]  

Oseltamivir Has similar effect with zanamivir with an improvement of 

bioavailability compared to zanamivir.  

1999 [22] 

[23]  

Aliskiren Use for treatment of hypertension by impacting on  

renin-angiotensin system.  

2007 [22] 

[24]  

Boceprevir Boceprevir is antiviral medication used to treat chronic 

Hepatitis C  

2011 [22] 

[25]  

Ritonavir Inhibits HIV protease and interferes the reproductive cycle 

of HIV 

1996 [22]  

Tirofiban Tirofiban is an antiplatelet drug by inhibiting between 

fibrinogen and platelet integrin receptor GP IIB/IIIa.  

1998  [22]  

Raltegravir An antiretroviral medication used together with other 

medication, to treat HIV/AIDS.  

2007 [22]  

Loteprednol 

etabonate 

An ophthalmic corticosteroid formulation  2020 [26] 

Remdesivir A SARS-CoV-2 nucleotide analog RNA polymerase 

inhibitor for the treatment of COVID-19 patients 

2020 [20] 

Fostesavir Treat HIV 2020 [27] 

Artesunate Treat severe malaria 2020 [28] 

Opicapone Treat Parkinson’s disease 2020 [29] 

Amisulpride Help prevent nausea and vomiting after surgery  2020 [30] 

6. Challenges of CADD 

Although CADD has been making great 

contribution, it still faces many challenges. Its 

algorithms should take into account the protein 

flexibility. Nowadays, most CADD studies 

assume a rigid protein structure which is not 

accurate [31]. Study of Lexa et al. shows that 

flexible docking can improve the prediction up 

to 80-95%, whereas the best performance of 

rigid docking only reaches 50% to 70% [32]. 

Another issue connects with false - positive 

reports [33] which is likely associated with 

scoring function [34].  

The second challenge concerns the 

reliability and accessibility of database. 

Currently, the databases are fragmented, 

coming from various sources and this can cause 

inconsistency [35] due to different enumeration 

standards. For example, Audibert et al. had 

detected that there is a considerable 

inconsistency in reported data when they 

collected IND dates for 587 New Molecule 

Entities (NMEs) approved between 1994 and 

2014 from FDA’s drug database and Federal 

Register (FR) [36].  The scientific data often 

contain intellectually and mathematically 

information, therefore there is a challenge 

related to how to design data accessibly and 

understandably to users [37]. This makes large 

scale virtual screening difficult. In addition, 

many quality databases are commercial or 

restricted, which means expensive or 

impossible to access from academia. This 

challenge calls for an open access to chemical 

database, which is advocated by Irwin Lab and 

Shoichet Lab. Besides, nowadays big data has 

encountered new infrastructure challenges such 

as network resilience, network latency and 

unpredictable behaviour in cloud - based 

systems [38].  

The third challenge faced CADD is the 

complex biological system. CADD is expected 

to describe effectively and accurately the 

interactions of drugs with this system at 

different levels from molecular, cellular, tissue 

https://en.wikipedia.org/wiki/Antiplatelet
https://en.wikipedia.org/wiki/Medication
https://en.wikipedia.org/wiki/Antiretroviral_medication
https://en.wikipedia.org/wiki/HIV/AIDS
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to organism. However, this is not a trivial task. 

Most of studies until today have been working 

at molecular level, describing the interaction 

between drug molecule and target 

macromolecule [39]. But this is a simplified 

model, in contrary to the real phenomenon 

happening in living organisms where multi-

interactions occur and are unknown yet [40]. 

Recent research has tried at tissue and cellular 

level [41], given the prospect, more endeavors 

are needed. 

To tackle above challenges, several research 

directions have been launched. Many groups 

have focused on building big and reliable 

databases [42], [43]. Go hand-in-hand with 

database is calculation method development. 

CADD has been increasingly applied machine 

learning (ML) to speed up the process and 

reduce failure rates in DDD [44]. Using ML, 

Farimani et al. has identified the pathway of 

opiates in binding to the orthosteric site, the 

main binding pocket of µ - Opioid Receptor 

[45]. Similarly, molecular dynamic (MD) 

simulation has been applied intensively to 

simulate the dynamic interaction between drugs 

and targets [46]. Nunes et al., for example, had 

applied successfully MD simulations to 

examine the interaction between a pyrazol 

derivative Tx001 and malaria target protein 

PfATP6 [47].  

7. Conclusion 

CADD has made significant contribution 

and is considered as an important approach in 

drug discovery. It can accelerate the process, 

save time and resources. For the last two 

decades, CADD has helped to bring many 

drugs to patients. In spite of having many 

successes, CADD faces several challenges 

including fragemented and inconsistent 

database and underperformance calculation 

methods.  In order to improve the efficacy of 

CADD, more high-quality databases of drug 

targets and ligands are needed along with better 

algorithms and scoring functions. Furthermore, 

methods that can simulate living organism and 

perform animal testing in silico are in great 

demand because the public attitude to these 

conventional testings is becoming less 

supportive. 
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