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ABSTRACT

Balancing numbers n are originally defined as the solution of the
Diophantine equation 142+ - -+(n—1) = (n+1)+- - -+(n+r), where
r is called the balancer corresponding to the balancing number
n. By slightly modifying, n is the cobalancing number with the
cobalancer r if 142+ --+n = (n+1)+- - -+(n+r). Let B, denote the
nt" balancing number and b,, denote the nt" cobalancing number.
Then 8B2 +1 and 8b2 +8b,,+1 are perfect squares. The n'* Lucas-
balancing number C, and the n'" Lucas-cobalancing number ¢,
are the positive roots of 8B2 +1 and 8b2 +8b,, + 1, respectively. In
this paper, we establish some trigonometric-type identities and
some arithmetic properties concerning the parity of balancing,
cobalancing, Lucas-balancing and Lucas-cobalancing numbers.

MOT SO PANG THUC KIEU LUGNG GIAC VA TINH CHAN LE
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TU KHOA

S6 can bang

S6 ddi can bang

S6 Lucas-can biang

Déng thic kiéu lugng giac
Tinh chan 1é

TOM TAT

Cac s can bang n duge dinh nghia nhu 14 nghiém ciia phuong
trinh Diophantus 1+2+---+(n—1) = (n+1)+- -+ (n+7), trong
do6 r dude goi 1 hé s6 can biang ng véi sd can bang n. Tuong
tuy nhu vay, n 14 mot s6 doi can bang v6i hé sd dbi can bang r
néul+2+---+n=m+1)+---+(n+r). Ky hieu B, 1a s6 can
bang thit n va b, 1 s6 d6i can bang thi n. Khi d6, 8B2 + 1 va
8b2 +8b,, 41 1a nhitng s6 chinh phuong. S6 Lucas-can bang thi n,
ky hiéu C,,, va s6 Lucas-ddi can bang thit n, ky hiéu c,, lan lugt
la cac can bac hai duong ctia 8 B2 +1 va 8b2 + 8b,, + 1. Trong bai
bao nay, bang nhitng tinh toan so cap, ching toi thiét lap mot
s6 déng thic kiéu lugng gidc va tit do chi ra mot s6 tinh chat s6
hoc lién quan dén tinh chén 18 clia cic s6 can bang, cac s6 ddi
can bang, cac s6 Lucas-can bang va cac sd Lucas-dbi can bang.
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1 Introduction

The study of number sequences has been a source of attraction to the mathematicians since
ancient times. From that time many mathematicians have been focusing their attention on the
study of the fascinating triangular numbers (numbers of the form n(n + 1)/2 where n € Z*
are known as triangular numbers) [1, 2, 3, 4]. While studying triangular numbers, Behera and
Panda [4] introduced the notion of balancing numbers. An integer n € Z™T is a balancing number
if

1424 +n—-1)=Mn+1)+n+2)+ -+ (n+r), (1)

for some r € Z*. The number r in (1) is called the balancer corresponding to the balancing
number n. Behera and Panda also found that n is a balancing number if and only if n? is
a triangular number, as well as, 8n? + 1 is a perfect square. Though the definition suggests
that no balancing number should be less than 2, we accept 1 as a balancing number being the
positive square root of the square triangular number 1 [5]. If n is a balancing number then the
positive root of 8n% + 1 is called a Lucas-balancing number [6].

Let B, and C,, denote the n* balancing number and the n** Lucas-balancing number, respec-
tively, and set By = 0,y = 1. Then we have the recurrence relations

Bn+1 == 6Bn - anl,n Z 1, (2)

with Bo = O, B1 == 1, and
Cn+1 = GCn - Cn—lyn > 17 (3)

with Cy = 1,1 = 3. These recurrence relations give the Binet formulas for balancing and
Lucas-balancing numbers as follows:
AT — Ay

Bi=1,B,=6,B,=——=, foralln >0, (4)
A1 — A2

and
AT+ Ay

C1=3,Co=17,C, = , for all n > 0, (5)

where \{ =3 + 8, A\ =3 — /8.

By slightly modifying (1), Panda and Ray [5] defined cobalancing numbers n € Z* as solutions
of the Diophantine equation

1+24---+(n-1)=n+1)+n+2)+ -+ (n+r), (6)

where r is called the cobalancer corresponding to n. An natural number n is a cobalancing
number if and only if 8n? 4 8n+1 is a perfect square. So we can accept 0 is the first cobalancing
number. Let b, be the n'" cobalancing number. Then the n'* Lucas-cobalancing number ¢, is
the positive root of 8b2 + 8b,, + 1. Moreover, we have the recurrence relations [7]

b1 =0,b0 =2,bp41 =6by, —bp—1+2,n > 2, (7)

and
cr=1,c0="T,¢p41 =6¢, —Cp_1,n > 2. (8)
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The following formulas are the Binet forms for cobalancing and Lucas-cobalancing numbers,

respectively, - - - -
a;"t =" 1 a4+
bn: 7—7andcn:—2

42 2
where a1 =1+ v2 and ay = 1 — /2.

, 9)

Many interesting properties and important identities of balancing, cobalancing, Lucas-balancing
and Lucas-cobalancing numbers are available in the literature. Panda [6] established two fol-
lowing identities which look like the trigonometric identities sin(z+y) = sinx cos y+cos x sin y:

Boim = BnCy + BinChy (10)

and
B,,—m = B,C,,, — B,,,C,,.. (11)

Before, some trigonometric-type identities have been established for Fibonacci numbers and
Lucas numbers [8]. In this work, we establish some more trigonometric type identities and we
deduce from these identities the parity of balancing, cobalancing, Lucas-balancing and Lucas-
cobalancing numbers.

2  Sum of two balancing numbers

In this section, we prove some trigonometric-type identities of balancing number and deduce
their parity. Starting from Panda’s idea, the following theorem give an identity which has the
T — y)COS(a:—i—y)

2 2 7
Theorem 2.1. For n,m are natural numbers such that n > m and having the same parity, we
have

same type of the trigonometric identity sinz — siny = 2 sin(

2 2

Proof. Using Binet formulas, we have

n—m n—m n+m n+m
)\ 2 _ A 2 )\ 2 + )\ 2
2 +2 )\1 — /\2 2

PP UEP Y

YD PR VR
= B, — By

This completes the proof. ]

Corollary 2.2. For n,m are natural numbers such that n > m, we have
Bop — Bo = 2Bn—an+m~ (13)

Proof. This is an intermediate consequence of Theorem 2.1. O
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In Corollary 2.2, by taking m = 1 we obtain a corollary of which [9, Theorem 2.1] is a particular
case.

Corollary 2.3. Forn > 1, we have

Bopn — 6 =2B,_1Cpi1. (14)

With Theorem 2.1, we can see the parity of balancing numbers.

Theorem 2.4. For every integer n > 0, the balancing number B, and n have the same parity.
Proof. If n,m are integers with the same parity then B,, and B,, have the same parity by
Theorem 2.1. On the other one, we have By = 0, By = 1 and By = 6. It implies that B, and n

have the same parity. O

We also have an identity of balancing numbers which resembles the trigonometric identity

sinx +siny = QSin(m 5 y) cos($ ; y)
Theorem 2.5. Let n,m be natural numbers such that n > m and having the same parity.
Then

Proof. Using Binet formulas, we have

n+m n+m n—m n—m

M2 =X A2 A2
' 2

2Bn anfm — 2 1
3 2 A1 — A2

N -8 P
DYDY Al — Ao
— B, + B,,.

This is what was to be shown. O

3 Trigonometric-type identities of Lucas-balancing numbers

In the previous section, we have some trogonometric-type identities of balancing numbers in
which balancing numbers are seen as sines while Lucas-balancing numbers are seen as cosines.
Continuing with this point of view, we consider in this section trogonometric-type identities
of Lucas-balancing numbers and their parity. The following theorem shows that we have an
identity of Lucas-balancing numbers which looks like the trigonometric identity

Yy cos(E2Y), (16)

x
cosx + cosy = 2 cos( 5 5

However, we have another which resembles, up to a scalar, the trigonometric identity

Yy gin(E=Y), (17)

cos:c—cosy:—Qsin(x2 5

http: //jst.tnu.edu.vn 47 Email: jst@tnu.edu.vn



TNU Journal of Science and Technology 226(15): 44 - 52

Theorem 3.1. Let n,m be natural numbers such that n > m and having the same parity.
Then

ii) Cp — Cpy = 16By

Proof. Continue using Binet formulas, we have

n+m n+m n—m n—m

A2 A2 A2 Ay 2

20n+m0n—'m = 2. 1 + 2 . 1 + 2
2 2

2
AT+ AL AT+ AP
:1224_122:”_’_0%
The first identity is proved. To prove the second, we have
BRI\ L\
Bn+m Bn—m = >\1 _ )\2 )\1 _ >\2
3 2 M =X A=A
1
= m(/\? + A5 = A" = AY)
1 1
= SO0+ 28— X = M) = (G — Cn).
This implies the required identity. O

Corollary 3.2. For n,m are natural numbers such that n > m, we have

Z) Con + Com = 2C1mChnm; (20)
it) Cop — Cop = 16 By Bp—m. (21)
Proof. These identities directly follow from Theorem 3.1. O

Now, we can see the parity of Lucas-balancing numbers.

Theorem 3.3. For all integer n > 0, the Lucas-balancing number C, is odd. Moreover, if n,m
are integers with the same parity then the difference between C, and Cy, is divisible by 16.

Proof. If n,m are integers with the same parity then the difference between C,, and C,, is
divisible by 16 by the second identity of Theorem 3.1. This also means that C,, and C,, have
the same parity. On the other hand, we have Cy = 1,C; = 3, Cy = 17. It implies that C), is
odd for all n. O

We can not find identities for Lucas-balancing numbers which resemble the trigonometric iden-
tities cos(z £ y) = cosz cosy F sinz siny. But we establish the following interesting identities.

Proposition 3.4. Let n,m be natural numbers such that n > m. Then
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i) 16(CChy — BpBm) = TCrsm + 9Cr—m; (22)
ii) 16(CpCyn + BuBm) = 9Chm + TChm. (23)

Proof. Applying Binet forms, we have
AT FA3 AT+ AT = A8 AT =AY

C.Cp — BB, = .
e e 2 2 M= A=A
_ )\;L—‘rm 4 Ag—i—m =+ )\wll—m 4 )\;L—m B )\gb—&—m 4 )\gL—&—m _ A'iz—m _ )\g—m
4 32
TN 9 AT AT TChim + 9Cn—m
16° 2 16 2 16 )
Hence we get the first identity. The second is proved by similar calculations. O

The following proposition give us relations between sums of Lucas-balancing numbers and
Lucas-cobalancing numbers or cobalancing numbers from which we deduce an arithmetic prop-
erty of sum of two consecutive Lucas-balancing numbers.

Proposition 3.5. For n,m are integers such that n > m > 1, we have

Z) Cn+m—1 - Cn—m = 2cncm; (24)
it) Cpim—1+ Cpnem = 16byby, + 8(by, + b)) + 4. (25)
Proof. Using Binet forms with remark that oy = —1, we have
o a%n—l + agn—l a%m—l + a%m—l
B ai(n+mfl) + ag(n+m71) - a?(nfm) + ag(nfm)
B 2 2
1
- i(cn—i-m—l - Cn—m)
Hence we obtain the first identity. Similarly, we can prove the second identity. O

By ii) of Proposition 3.5, we have the following consequence about sum of two consecutive
Lucas-balancing numbers.

Corollary 3.6. For all integer n > 1, the sum of (n — 1) and n'* Lucas-balancing numbers
1s divisible by 4.

4 Parity of cobalancing and Lucas-cobalancing numbers

In the last section, we establish some identities of cobalancing and Lucas-cobalancing numbers
fromwhich we obtain some properties on the parity of these numbers. Firstly, we have an
interesting property of sums of two cobalancing numbers and deduce the parity of cobalancing
numbers.
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Proposition 4.1. Let n,m be positive integers.

i) If n > m then byym — bp—m = 2¢,Bp; (26)

ii) If n < m then byym — bm—nt1 = 2¢, B, (27)

Proof. By Binet formulas, we have

2n—1 2n—1 _2m 2m
ay + a5 ay’” — Qg

2 42

a?(ner)fl . O[Q(ner)fl O[Q(nfm)fl 2(n—m)—1

cn By =

2 o 2

8v2 8v2
1

?(bm_m —bpm), if n >m;

§(bn+m — byp—n+1), otherwise.

Hence we have what was to be demonstrated. O

Theorem 4.2. The cobalancing numbers are even. Moreover, for all m > 1, the difference
between the (2m + 1) and (2m)*" cobalancing numbers is divisible by 4.

Proof. By ii) of Proposition 4.1, we can see that b,, and by, have the same parity for all n > 1.
It follows that b, is even for all n > 1 since by = 0. Moreover, from ii) of Proposition 4.1, we

also obtain the second affirmation since Bs,, is even by Theorem 2.4. O

In the following theorem, we again get an identity of cobalancing and Lucas-cobalancing num-

bers which looks like the trigonometric identity sinx + siny = 2 sin(z ; y) cos(x ; y)
Theorem 4.3. Let n,m be positive integers.
i) If n > m then chim + cnem = 2¢,Cm; (28)
ii) If n < m then chim — Cm—nt1 = 2¢,Cpy. (29)
Proof. By Binet forms, we have
o a%nfl + agnfl a%m + a%m
n-Yym — 2 . 2
B a?(n—i—m)—l + ag(n—i-m)—l . a?(n—m)—l + ag(n—m)—l
B 4 4
—(en+m + Cn—m), if n. > m;
§(cn+m — Cm—n+1), Otherwise.
This completes the proof. ]
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We can deduce the parity of Lucas-cobalancing numbers from the second identity of the previous
theorem.

Theorem 4.4. The Lucas-cobalancing numbers are odd.

Proof. By ii) of Theorem 4.3, we can see that ¢, and ¢,4+1 have the same parity for all n > 1.
It follows that ¢, is odd for all n > 1 since ¢; = 1. ]

We finish with an identity from which we can see a better property on the parity of Lucas-
cobalancing numbers of even index. It shows that the (2n)"* Lucas-cobalancing number is
congruent to —1 modulo 8 and the (4n)*" Lucas-cobalancing number is congruent to —1 modulo
16, for all n > 1.

Proposition 4.5. For integer n > 1, we have

Con + 1 =8(2b, + 1)B,. (30)

Proof. By Binet forms, we have

— <a%n1a§nl 1> a%nia%n

0/11”’1 _*_0/217171 a;l +0[271 1
- — — B,
32 32 2
1 1
Hence we obtain the required identity. O

5 Conclusion

In this paper, we established some new trigonometric-type identities for balancing numbers,
Lucas-balancing numbers, cobalancing numbers and Lucas-cobalancing numbers. Then we
proved some arithmetic properties concerning the parity of these numbers.
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