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Abstract

In this paper, we present two different approaches to define transition nodal basis functions that can be used to allow
elements of different degrees on the same mesh in p-adaptive finite element method.
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Tém tit

Trong bai bao nay, chung tdi gidi thi¢u hai cach xay dung ham nuit co s¢ chuyen giao dung trong phuong phap phan tir
hitu han thich nghi loai p. Cac cach x4y dung nay c6 thé cho phép cac phan tir c6 bac khac nhau cing ton tai trong mot
ludi tinh toan.

Tir khéa: Diém nit; Him nut co sd; Phan tir hiru han loai p.

1. Introduction

Finite element is one of the most popu-
lar methods to solve partial differential equa-
tions arising from both academic and engineer-
ing problems. In [1], the authors have introduced
nodal points, nodal basis fuctions used in the p-
version of finite element methods (see [2, 3, 4]),
where elements have the same degree. In this pa-
per, we will present different approaches to for-
mulate transition nodal basis functions so that
elements of different degrees can co-exist in

the same mesh (triangulation). This flexibility
helps p-adaptive finite element methods to bet-
ter capture the behavior of the exact solution by
adaptively choosing degrees for elements (see
[3,5,6,7,8,9,10, 11, 12]).

In a mesh with varying degrees, along the in-
terfaces separating elements of different degrees,
it is natural to use nodal points of higher degree
for shared edges. Therefore, along degree inter-
faces, only elements of lower degrees need new
sets of basis functions. These elements are called
transition elements.
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Figure 1. A transition element (¢ in the middle).

2. The first approach

Consider an admissible mesh, where there is
no violation of 1-irregular rule and 2-neighbor
rule, (for more details on these rules, see [13,
14]). In this mesh, a transition element is an ele-
ment of degree p having one and just one neigh-
bor of degree p + 1 (the other neighbors if exist
are of degree p). Figure 1 illustrates a transition
element ¢ with its neighbors. The edge shared
by t and its neighbor of higher degree (p +1) is
called transition edge.

To define a set of transition basis functions
for t, we will follow the same idea of [1] by mak-
ing each basis function equal 1 at one nodal point
and equal O at all other nodal points.

Assume edge two is the transition edge of .
By [1, Corollary 3.4], all of the basis functions
¢ in 2, (1) that are not associated with edge two
equal zero on the whole of edge two. In particu-
lar, these functions equal zero at nodal points of
degree p+1 on the transition edge. Therefore, we
can use these functions in the set of basis func-
tions for transition element ¢ without modifica-
tion.

It now remains to define basis functions as-
sociated with nodal points of degree p + 1 on the
transition edge (including the two vertex nodal
points). Label these points ny,, ny,, ney, ..., Ne,, ;5
where the first two are vertex nodal points and
the rest are edge nodal points. Denote 6; the
function of the straight line perpendicular to edge
two at ne; and S;,; the set of interior nodal points
of t. Let

p-1

' =Cieres [10;- ) aijpj. (1)
]:1 J€Sint
JF

Here c¢; and c3 are equations of edge one and
edge three; C; and a;; are chosen so that ple)
equals 1 at n,, and equals O at all the other nodal
points of degree p +1 on edge two, as well as
all interior nodal point of ¢. Clearly, ¢ also
equals zero at nodal points of degree p on edge
one and edge three. Hence (%) are the transition
edge basis functions for .

Now we define the basis functions associated
with the two vertices on the transition edge. We
begin with standard vertex basis functions and
use ¥ to modify them to have right values on
the transition edge.

p-1
Y=y, = Y By, 2)
=

where i = 1,3 and b;; are chosen such that "
equals zero at all edge nodal points of degree
p+1 on the transition edge. Obviously, (V!
equals 1 at the vertex v;.

In summary, with two vertex basis functions
defined by equation (2), p — 1 edge basis func-
tions defined by equation (1), and standard nodal
basis functions of degree p not associated the
transition edge, we have a set of N, +1 func-
tions that equal 1 at one nodal point and equal 0
at all other nodal points of ¢. An argument sim-
ilar to the one in [1, Theorem 3.3] shows that
the set is linearly independent. Let 22y,1/2(f) be
the space spanned by that set of basis functions.
Then 22),11/2(¢) is a polynomial space for the
transition element ¢. Naturally we would want
this newly defined space to contain the regular
space of polynomials of degree p restricted on ¢.
The following theorem ensures that desire.

Theorem 2.1. 22,,(t) is a subset of Pp112(1).
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Proof. Since 22y,1/2(t) includes all of the ba-
sis functions in &?,(f) that are not associated
with nodal point on the transition edge, it suf-
fices to show that basis functions of degree p as-
sociated with the transition edge is contained in
Ppi112(8).

From equation (2), we can write the standard
vertex basis functions ¢,, as a linear combina-
tion of functions in &2y 1/2(1):

p-1
o, ="+ Y iy, fori=1,3.

j=1

Therefore, ¢,, and ¢,, are contained in
Pp+112(1).

Now we show that the standard basis func-
tions of degree p are also a linear combination
of functions in &), ,1/2(f). Denote 0 j the function
of straight line perpendicular to transition edge at

ne;, a nodal point of degree p. Let

p-2
P =Ciacs [10;- Y aijo;

I:% JESint

J#i
where C; and @; j are chosen so that @) equals
1 at &; and equals O at all of the other nodal points
of degree p of t. By the uniqueness of basis func-
tions proved in [1, Theorem 3.3], 9/ is actually
the nodal basis function of 22, (1) associated with
the nodal point é;. Because ¢p; € Py, 1/2(1) for
J € Sins, it 1s now sufficient to show that e j}?;lz

) ) o -1
can be written as linear combinations of {® j};)zl ,

where

p—2 p-1
j=1 j=1
J#i J#EI

Since 6; and 0 j are lines of the same direction,
the problem is reduced to one dimensional case:
show that polynomials of degree p —3 can be
written as linear combinations of basis polyno-
mials of degree p—2. This statement is obviously
true. ]

Remark 2.2. The set of basis functions defined
above is not a unique one. For a transition ele-
ment, there are more than one set of basis func-
tions that equal 1 at a nodal point and equal 0 at
all of the others.

3. The second approach

In the previous subsection, we considered
only meshes with no violation of 1-irregular rule
and 2-neighbors rule. Now we consider more
general meshes that might have violations of
those two rules. In these meshes, a transition el-
ement 1s an element of degree p with at least one
of its neighbors of degree p + 1 or higher.

For the sake of clarity, we begin with a tran-
sition element ¢ of degree p having one neighbor
of degree p + 1 and no other neighbor of degree
higher than p. Without loss of generality, we can
assume that the higher degree neighbor is across
edge three of ¢. In other words, edge three is a
transition edge of t.

Similar to the previous subsection, we can
use the standard basis functions basis functions!
transition basis functions of degree p at the
nodal points that are not associated with edge
three. Again, it remains to define the basis func-
tions associated with the transition edge three.

Define a special polynomial of degree p + 1,
which is zero at all standard nodal points of de-
gree p of ¢, and identically zero on edges one and
two by

B (p—-1)/2
b= [] (c1-kip)ca—kip)
k=0

for odd p, and

(p-2)/2

dp+n=(c1—c) [] (c1-kip)ca—kip)
k=0

for even p.

This polynomial is actually a product of equal
number of lines parallel to edge one and edge two
for p is odd, and is that same product multiplied
with the median from vertex three for p is even.
Figure 2 represents the lines in the formula of
(ﬁ(pﬂ) for p=4,5.

A polynomial space for the transition element
is given by P(t) = @p([)@(j)(p_{_l). In other words,
we form p + 2 basis functions {w,-}f:z as linear
combinations of ¢,+1) and N, standard basis
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O=-0=-0--0=-=>r-0
(b)p=5

Figure 2. Lines in the formula of J),,H for p=4,5.

functions of degree p of t. Here v; is the ba-
sis function associated with the nodal point n;
on the transition edge. Denote S and Sy, 4,5 the
set of nodal points of # and that associated with
the transition edge, respectively. We have

Vi=) aijpj+ciPpir. (3)

Jj€Ss

Matching both sides of equation (3) above at
standard nodal points of ¢ that are not associ-
ated with the transition edge yields a;; = 0 for
J € Strans- Therefore equation (3) becomes

vi= ) aijdpj+ciPpi. “4)

jestrans

This equation implies that y; can actually be
written as a linear combination of ¢,+1) and
p + 1 standard basis functions of degree p asso-
ciated with the transition edge. Since we know
values of y; at p +2 points on edge three, co-
efficients a;; and ¢; in equation (4) can be de-
termined by solving a (p +2) x (p + 2) system of
linear equations. This approach is considered ex-
pensive as we have to solve a system of size p+2
for each basis function ¢;.

In PLTMG [15], the coefficients «;; are
computed by matching both sides of equation
(4) at standard nodal points of degree p asso-
ciated with the transition edges. At each point,
$p+1 equals 0 and all of the ¢; equal O except
one equals 1. As of ¥;, we do not know its com-
plete formula but its values on the transition edge
are defined by its p + 2 values at nodal points
of degree p + 1. In addition, the coefficient c;
can be computed by taking (p + 1)th derivative

of equation (4) in the tangential direction for
the transition edge. In this approach of compu-
tation, all the coefficients are geometry indepen-
dent. Therefore, we only need to do the calcula-
tion once and use the results for all elements.
Now we consider a more general case, where
the higher degree element is of degree p + k,
for k > 1. Similarly, we can define a polynomial
space for ¢ as
P (1) = Py() & {1y (€1 — )™} E

m=0’

and the transition basis function v; is given by

vi= )

k-1
aij(/)j"‘ Z Ci,m(,bp+1(01—02)m. 5
jeSIrans m=0

Here the coefficients c; , can be consecutively
computed by taking (p + m + 1)st derivative of
equation (5), and a;; are computed as in the pre-
vious case.

In this approach, we can be even more gen-
eral by allowing one element to have more than
one transition edge. The transition basis func-
tions associated with transition edges are defined
consecutively and almost independently. Assume
edge two is the only transition edge left. Simi-
larly, we can define a polynomial space for ¢ as

K®_1

P(t) =P, (1) & (L)

(p+1)
~(2

m}k(z)—l
(p+1)

(c3—c1)" =0 -

After defining the transition basis functions asso-
ciated with edge three we can define those asso-
ciated with edge two as in equation (5). The only
difference is that the basis function ¢; associated
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with vertex one, is now ¥, the transition basis
function associated with edge three at vertex v;.

If a third transition edge is present, it is
treated analogously.

Theorem 3.1. The finite element spaces con-
structed in the two approaches are C°.

Proof. Let e be the shared edge of two elements
tand t', where t is of degree p and t' is of degree
p+k, k=1. Assume P € 2(t) and Q € 2(t')
(if ¢’ is not a transition element we can think of
P (1) as P (1)) agree at p+k+1 nodal points
of degree p + k on e. We will show that P and Q
agree along the whole edge e.

Clearly, (1) and 2(t') could contain poly-
nomials of degree higher than p+ k, namely tran-
sition basis functions associated with edges other
than e. However, in both approaches 2 and 3,
these basis functions are defined to equal O on
the whole e. Therefore, the restrictions of P and
Q on e are 1-dimensional polynomials of degree
p + k or less.

An argument similar to the one [1, Proposi-
tion 3.5] shows that P and Q agree on the whole
edge e. ]

4. Conclusion

In this paper, we have formulated two differ-
ent approaches to define transition nodal basis
functions that can be used in p-adaptive finite
element to have elements of varying degrees. We
can prove that the spaces constructed in both ap-
proaches are continuous as desired.
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