NGHIÊN CỨU BIẾN TÍNH DÂY NANO SnO2 Bằng phương pháp nhỏ phủ Với dung dịch Cu(NO3)2 để Cải thiện tính chất nhạy khí h2S

Phùng Thị Hồng Vân^{1*}, Nguyễn Văn Toán², Vũ Ngọc Phan³

¹Trường Đại học Tài nguyên và Môi Trường Hà Nội, ²Trường Đại học Bách khoa Hà Nội, ³Trường Đại học Phenikaa

TÓM TẮT

Dây nano SnO₂ được biến tính với các hạt nano CuO bằng cách nhỏ phủ dung dịch đồng nitrat lên điện cực Si/SiO₂ đã có dây nano SnO₂. Dây nano SnO₂ đã biến tính có độ đáp ứng khí H₂S vượt trội so với cảm biến dây nano SnO₂ chưa biến tính. Ở cùng nhiệt độ 250 °C và với cùng nồng độ từ 0,25 đến 2,5 ppm H₂S, độ đáp ứng khí (R_a/R_g) của cảm biến dây nano SnO₂ chưa biến tính đạt từ 1,6 đến 2,36 lần, khi biến tính với CuO thì độ đáp ứng của cảm biến này tăng lên và đạt giá trị từ 1,7 đến 531. Ngoài ra, khi cảm biến SnO₂-CuO làm việc ở nhiệt độ 150 °C thì độ đáp ứng khí H₂S tăng lên rất mạnh từ 66 đến 2023 lần tùy thuộc vào nồng độ khí đo (0,25 - 2,5 ppm). Các kết quả nghiên cứu này của chúng tôi đã chỉ ra rằng, việc biến tính dây nano SnO₂ với CuO không những làm tăng độ đáp ứng với khí H₂S mà còn làm giảm nhiệt độ làm việc của cảm biến dây nano SnO₂. **Từ khóa:** vật liệu bán dẫn; cảm biến khí; biến tính CuO; khí H₂S; dây nano

Ngày nhận bài: 20/10/2020; Ngày hoàn thiện: 14/11/2020; Ngày đăng: 27/11/2020

MODIFICATION OF SnO₂ NANOWIRES BY Cu(NO₃)₂ SOLUTION DROPPING FOR ENHANCING H₂S SENSING CHARACTERISTICS

Phung Thi Hong Van^{1*}, Nguyen Van Toan², Vu Ngoc Phan³

¹Hanoi University of Natural Resources & Environment ²Hanoi University of Science & Technology (HUST) ³Phenikaa University

ABSTRACT

CuO nanoparticles modified SnO₂ nanowires were fabricated by dropping copper nitrate aqueous solution onto SnO₂ nanowires as-prepared on Si/SiO₂ electrodes. The CuO-modified SnO₂ nanowires had a superior H₂S response in comparison with raw SnO₂ nanowire sensors. At 250 °C, the R_a/R_g values of the raw SnO₂ nanowires to from 0.25 to 2.5 ppm H₂S were from 1.6 to 2.36 respectively, while CuO-modified SnO₂ nanowires responses to the same concentrations of H₂S were from 1.7 to 531. In addition, at the working temperature of 150°C, the H₂S responses of the CuO-modified SnO₂ nanowires increase sharply from 66 to 2023 depending on the gas concentrations (0.25-2.5 ppm). The results show that the modification of SnO₂ nanowires with CuO not only increases the response to H₂S gas but also reduces the working temperature of the SnO₂ nanowires of the SnO₂ nanowires concentrations (0.25-2.5 ppm).

Key words: semiconductor; gas sensors; SnO_2 nanowires; CuO nanoparticles; H_2S

Received: 20/10/2020; Revised: 14/11/2020; Published: 27/11/2020

* Corresponding author. Email: pthvan@hunre.edu.vn

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

1. Mở đầu

Cùng với sự gia tăng nhanh về dân số, sự phát triển nhanh của các khu công nghiệp cũng như các hoat đông khai thác v.v., vấn đề ô nhiễm môi trường không khí ngày càng trở nên trầm trọng. Ô nhiễm không khí gây bởi các khí độc không những làm ảnh hưởng tiêu cực đến sức khỏe con người mà còn có thể hủy hoại môi trường sống cũng như hệ sinh thái. Các loai khí độc bao gồm H₂S, CO, NO₂, NH_3 có thể được thải ra từ các nguồn gây ô nhiễm như các nhà máy, các khu công nghiệp, các loại phương tiện giao thông vận tải, và các hoat đông khai thác hầm mỏ và chăn nuôi v.v. [1]. Trong số các khí độc kể trên, khí H₂S được biết đến như là một chất khí cực kỳ độc hại, có thể gây ảnh hưởng trực tiếp đến sức khỏe con người ngay cả ở nồng đô thấp cỡ vài phần triệu (ppm). Con người có thể cảm nhận được mùi của khí H₂S ở nồng đô rất thấp cỡ 0,13 ppm. Tuy nhiên khả năng mũi người phát hiện mùi của khí H₂S bị suy giảm khi tiếp xúc trong một thời gian dài. Khi hít phải khí H₂S với nồng đô thấp sẽ gây ảnh hưởng đến đường hô hấp, giác mac, niêm mac và có thể gây hôn mê hoặc tử vong tùy thuộc vào nồng độ khí tiếp xúc. Giới hạn cho phép đối với khí H₂S trong môi trường công nghiệp là 10 ppm với thời gian tiếp xúc ngắn dưới 8h làm việc. Do đó, việc phát hiện và kiểm tra nồng độ khí H₂S ở nồng độ cỡ ppm là vấn đề rất quan trọng nhằm bảo vệ cuộc sống con người [0]. Nghiên cứu, chế tạo các cảm biến khí có đô nhay cao để có thể xác đinh chính xác nồng đô các khí độc hai nói trên trong môi trường khí sẽ giúp giảm thiểu ô nhiễm môi trường không khí. Để cải thiện tính chất nhay khí của thanh và dây nano SnO2, các nhà khoa học đã công bố nhiều công trình sử dụng các hạt nano có hoạt tính xúc tác thích hợp như biến tính với La₂O₃ và Ag cho độ nhạy tốt với khí C₂H₅OH [3], [4]; với LaOCl cho độ nhạy tốt với khí CO₂ [5]; với CuO cho độ nhạy tốt với H₂S [6]; biến tính với Pd cho độ nhạy tốt với các loại khí H₂ [7], [8], NO₂ [9] và H₂S [10] và biến tính với Au cho độ nhạy tốt với NO₂ [11].

Trong bài báo này, chúng tôi lựa chọn vật liệu dây nano SnO_2 bằng phương pháp nhỏ phủ với dung dịch Cu(NO_3)₂ để cải thiện tính chất nhạy khí của H₂S. Việc nghiên cứu và đưa ra các quy trình công nghệ chế tạo cảm biến trên đế Si/SiO₂ được chúng tôi tập trung nghiên cứu nhằm chế tạo được cảm biến có độ đáp ứng cao, thời gian đáp ứng nhanh để phục vụ cho việc quan trắc ô nhiễm môi trường không khí.

2. Thực nghiệm

2.1. Thiết bị nghiên cứu

2.1.1. Hệ bốc bay nhiệt nằm ngang

Để chế tạo các vật liệu dây nano làm cảm biến khí, chúng tôi sử dụng hệ bốc bay nhiệt nằm ngang như mô tả trong Hình 1. Hệ bốc bay nhiệt nằm ngang có 3 phần chính bao gồm: (1) Buồng bốc bay nhiệt là loại Lindberg/Blue M (TF55030A, Hoa Kỳ) có nhiệt độ tối đa là 1100 °C và tốc độ gia nhiệt khoảng 60 °/phút. Bên trong lò đặt ống thạch anh nằm ngang (ống TA-1 có đường kính 3 cm và chiều dài 150 cm; ống nối với các hệ khí cũng như hệ bơm chân không). (2) Hệ điều khiển lưu lượng khí (MFC, Aalborg, GFC17S-VALD2-A0200, Hoa Kỳ) được dùng để điều chỉnh lưu lượng khí Ar (0 - 500 sccm) và khí oxy (0 - 10 sccm) thổi vào ống thạch anh TA-1 với độ chính xác 0,15%; (3) Bơm chân không với độ chân không tối đa 5.10⁻³ Torr.

Hình 1. Sơ đồ hệ bốc bay nhiệt nằm ngang 2.1.2. Hệ đo đặc trưng nhạy khí

Thông thường khí mang là không khí sạch, khí này đồng thời đóng vai trò là khí so sánh (đo đường nền) vừa là khí pha loãng thành các nồng độ khí cần đo. Các khí chuẩn được trộn với không khí bằng các bộ điều khiển lưu lượng khí để tạo ra nồng độ khí theo yêu cầu.

Hình 2. Hệ đo cảm biến khí: (a) sơ đồ nguyên lý của hệ đo và (b) thiết bị nguồn dòng và đo thế

Hệ đo cảm biến khí theo phương pháp đo động bao gồm các phần chính (Hình 2) như sau: (1) Có 5 bộ điều khiển lưu lượng khí (MFC) để pha trộn khí nhằm tạo ra nồng độ khí theo yêu cầu; (2) Bộ điều khiển nhiệt độ có lập trình và có chức năng điều khiển. Nhiệt độ tối đa của lò là 450°C với sai số là 0,5°C; (3) Đầu đo áp vào 2 điện cực để đo điện trở của cảm biến. Đầu đo này được nối với máy đo điện trở (Keithley 2700); (4) Máy đo điện trở (Keithley 2700) được điều khiển bằng máy tính thông qua chương trình đo được lập trình bằng phần mềm VEE Pro cho phép đọc và ghi giá trị điện trở.

2.2. Hóa chất và phương pháp biến tính dung dịch với Cu(NO₃)₂

Dây nano SnO₂ dạng bắc cầu đã chế tạo trên điện cực Si/SiO₂ được nhỏ phủ lên trên bởi dung dịch muối Cu(NO₃)₂ có các nồng độ khác nhau, ủ trong môi trường không khí ở nhiệt độ cao để nhiệt phân muối thành oxit kim loại (Hình 3). Các bước tiến hành biến tính bề mặt dây nano SnO₂ bằng dung dịch Cu(NO₃)₂ được trình bày chi tiết như sau:

Hình 3. Các bước biến tính dây nano SnO_2 với CuO Bước 1: Chuẩn bị dung dịch. Hòa tan 1,88 g bột Cu(NO₃)₂ đã sấy khô trong 100 mL nước cất để tạo dung dịch muối Cu(NO₃)₂ có nồng độ 100 mM. Bằng cách tương tự, chúng tôi thu được các dung dịch muối Cu(NO₃)₂ có nồng độ khác nhau (1 đến 10 mM).

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

Bước 2: Nhỏ phủ dung dịch. Dùng micropipet hút dung dịch muối Cu(NO₃)₂ từ các lọ có nồng độ theo thứ tự từ nhỏ đến lớn rồi lần lượt nhỏ trên các điện cực đã được mọc dây nano SnO₂. Mỗi mẫu nhỏ 1 giọt. Sau đó để khô tự nhiên ngoài không khí.

Bước 3: Ủ mẫu. Các cảm biến dây nano SnO_2 đã nhỏ phủ dung dịch $\text{Cu}(\text{NO}_3)_2$ đưa vào trong ống thạch anh để tiến hành ủ ở 600 °C trong 3 giờ (tốc độ nâng nhiệt từ nhiệt độ phòng đến nhiệt độ ủ là 10 °/phút).

3. Kết quả và thảo luận

3.1. Hình thái của dây nano SnO₂ trước và sau khi biến tính với dung dịch Cu(NO₃)₂

Hình thái bề mặt dây nano SnO₂ trước và sau khi biến tính với CuO được nghiên cứu bằng kính hiển vi điện tử quét phát xa trường (FESEM) và kết quả nghiên cứu cụ thể hình thái bề mặt dây nano SnO₂ được mô tả trên Hình 4. Hình 4 (a-c) cho thấy hình thái của dây nano SnO₂ moc trên điện cực răng lược trước khi biến tính. Có thể thấy rằng, mật độ dây nano SnO₂ moc khá dày và đồng đều, đã nối được tất cả các răng lược điện cực lại với nhau. Các dây tiếp xúc với nhau và tạo thành cầu nối giữa hai điện cực, cầu nối này đóng vai trò là kênh dẫn cho dòng điện chạy qua khi đo khí. Bên canh đó, dây nano SnO₂ moc trên điện cực khá nhẵn, đều và min, hình dang của dây giống như hình lá kim, đường kính dây nano SnO₂ từ 40 đến 100 nm và chiều dài khoảng 20-50 µm.

Hình 4. Ảnh FESEM hình thái bề mặt dây nano SnO₂ trước và sau khi biến tính với CuO: (a) điện cực sau khi mọc dây nano SnO₂; (b,c) dây nano SnO₂ trước và sau khi biến tính với dung dịch tiền chất Cu(NO₃)₂ ở các nồng độ: (d) 1 mM, (e) 10 mM và (f) 100 mM

Hình 4 (d-f) là ảnh FESEM của dây nano SnO₂ sau khi biến tính với các dung dịch tiền chất Cu(NO₃)₂ ở các nồng độ khác nhau là 1; 10 và 100 mM bằng phương pháp nhỏ phủ. Qua kết quả nghiên cứu thấy rằng, đã xuất hiện các hạt bám trên dây nano SnO₂, tuy nhiên các hạt CuO bám trên bề mặt dây nano còn ít mà chủ yếu đi sâu vào các dây nano bên trong điện cực và bám xung quanh dây. Khi sử dụng dung dịch tiền chất Cu(NO₃)₂ với nồng độ càng lớn thì số lượng hạt CuO bám trên dây nano SnO₂ tăng dần và ở nồng độ 100 mM, các hạt CuO phủ kín dây và bám chồng lên nhau (Hình 4 (f)). Điều này đã cản trở khí H₂S tiếp xúc với dây CuO tại vùng chuyển tiếp SnO₂-CuO và cũng có thể chính điều này đã làm giảm độ đáp ứng khí H₂S khi so sánh với các mẫu biến tính ở nồng độ thấp hơn (1 và 10 mM).

3.2. Đặc trưng hồi đáp với khí H₂S của cảm biến dây nano trước và sau khi biến tính

Để nghiên cứu ảnh hưởng của việc biến tính hạt nano CuO tới tính chất nhạy khí H_2S của cảm biến, chúng tôi tiến hành khảo sát và so sánh đặc trưng hồi đáp của cảm biến dây nano SnO₂ trước và sau khi biến tính với hạt nano CuO (dùng dung dịch chứa 10 mM Cu(NO₃)₂).

Hình 5. Đặc trưng hồi đáp khí H₂S của cảm biến dây nano SnO₂ (a-e) đo trong khoảng nhiệt độ
200-400 ℃ và dây nano biến tính SnO₂-CuO (f-l) đo trong khoảng nhiệt độ 150-400 ℃

Nồng độ khí H₂S được nghiên cứu từ 0,25 đến 2,5 ppm, dây nano SnO₂ chưa biến tính được khảo sát trong khoảng nhiệt độ 200-400 °C còn dây nano SnO₂ biến tính CuO được khảo sát trong khoảng nhiệt độ 150 – 400 °C. Kết quả nghiên cứu đặc trưng nhạy khí của dây nano SnO_2 chưa biến tính được thể hiện trên Hình 5 (a-e). Trước tiên, có thể nhận thấy rằng cảm biến dây nano SnO_2 có đặc tính hồi đáp khí khá tốt trong khoảng nhiệt độ 200 – 400 °C.

Khi cảm biến tiếp xúc với khí H_2S thì điện trở của cảm biến giảm, điều này được giải thích là do dây nano SnO_2 là bán dẫn loại *n*, khi tiếp xúc với khí khử H_2S thì các ion oxy hấp thụ trên bề mặt dây nano SnO_2 phản ứng với khí khử H_2S và trả lại điện tử cho dây nano SnO_2 và làm điện trở giảm. Có thể nhận thấy, sự giảm điện trở của dây nano SnO_2 chưa biến tính không nhiều vì độ đáp ứng chưa được cao.

Hình 5 (f-l) cho thấy cảm biến dây nano SnO_2 biến tính CuO cũng thể hiện đáp ứng khá tốt với khí H₂S trong khoảng nhiệt độ 150 – 400 °C. So với cảm biến dây nano chưa biến tính, cảm biến dây nano SnO_2 biến tính với CuO đáp ứng khá tốt ở cả nhiệt độ 150 °C, nhưng hồi phục lại rất chậm ở nhiệt độ này. Cũng tương tự như dây nano SnO_2 chưa biến tính, điện trở của cảm biến dây nano SnO_2 biến tính với CuO cũng giảm khi tiếp xúc với khí H₂S. Điều này cho thấy dây nano SnO_2 biến tính với CuO (là bán dẫn loại *p*) cũng thể hiện bán dẫn loại *n* như dây nano SnO_2 chưa biến tính.

Như vậy, khi tiếp xúc với khí H₂S điện trở của cảm biến dây nano SnO₂ biến tính với CuO giảm khá mạnh trong khoảng nhiệt độ từ 150 °C đến 400 °C. Việc so sánh chi tiết về độ đáp ứng sẽ được trình bày ở các mục tiếp theo.

3.3. Ảnh hưởng nhiệt độ đến độ đáp ứng, thời gian đáp ứng và hồi phục của cảm biến

Kết quả độ đáp ứng khí (R_{α}/R_g) được tính toán từ đặc trưng hồi đáp (Hình 5) và được biểu diễn như một hàm phụ thuộc vào nhiệt độ làm việc (Hình 6).

Từ kết quả trên Hình 6, có thể nhận thấy dây nano SnO_2 biến tính với CuO có độ đáp ứng khí H₂S vượt trội so với cảm biến dây nano SnO_2 chưa biến tính. Ở cùng nhiệt độ 250 °C và với cùng nồng độ từ 0,25 đến 2,5 ppm H₂S: độ đáp ứng khí (R_a/R_s) của cảm biến dây nano SnO₂ chưa biến tính đạt từ 1,6 đến 2,36 lần, khi biến tính với CuO thì độ đáp ứng của cảm biến này tăng lên và đạt giá trị từ 1,7 đến 531 lần ở nhiệt độ 250 °C.

Ngoài ra, khi cảm biến SnO₂-CuO làm việc ở nhiệt độ 150 °C thì độ đáp ứng khí H₂S tăng lên rất mạnh từ 66 đến 2023 lần tùy thuộc vào nồng độ khí đo (0,25 - 2,5 ppm). Các kết quả nghiên cứu này của chúng tôi đã chỉ ra rằng, việc biến tính dây nano SnO₂ với CuO không những làm tăng độ đáp ứng với khí H₂S mà còn làm giảm nhiệt độ làm việc của cảm biến dây nano SnO₂.

Hình 6. Độ đáp ứng khí H₂S được biểu diễn phụ thuộc vào nhiệt độ làm việc của cảm biến trên cơ sở (a) dây nano SnO₂ và (b) dây nano SnO₂-CuO (10 mM Cu(NO₃)₂)

Bên cạnh đó, khi tăng nhiệt độ làm việc của cảm biến lên 300 °C thì cảm biến dây nano SnO₂ biến tính với CuO có độ đáp ứng tăng lên không nhiều so với dây nano chưa biến tính. Đây là một nhược điểm của cảm biến dây nano SnO₂ biến tính với CuO.

Hình 7. Thời gian đáp ứng và hồi phục với khí H₂S (nồng độ 0,25 và 2,5 ppm) thay đổi theo nhiệt độ: cảm biến trên cơ sở (a,b) dây nano SnO₂ và (c,d) dây nano SnO₂-CuO (10 mM Cu(NO₃)₂)

Trong nghiên cứu này, kết quả thời gian đáp ứng, hồi phục được tính toán từ đặc trưng hồi đáp (Hình 5) ở hai nồng độ khí H₂S thấp nhất (0,25 ppm) và cao nhất (2,5 ppm) rồi biểu

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

diễn sự phụ thuộc của hai thời gian này theo nhiệt độ từ 200 – 300 °C như trình bày ở Hình 7. Đối với nghiên cứu này chúng tôi không tính toán thời gian đáp ứng và hồi phục ở các nhiệt độ 150, 350 và 400°C, vì ở nhiệt độ 150°C thời gian đáp ứng và hồi phục rất kém, còn ở nhiệt độ 350 và 400°C thời gian đáp ứng và hồi phục trong một số trường hợp khi tăng nhiệt độ làm việc của cảm biến thì thời gian đáp ứng và thời gian hồi phục lại kém.

Kết quả trên Hình 7 (a-b) có thể thấy rằng, thời gian đáp ứng đã được cải thiên khi dây nano SnO₂ biến tính với CuO. Ở nhiệt độ 250 °C, thời gian đáp ứng với khí H₂S (0,25 ppm) của cảm biến trước và sau khi biến tính lần lượt là 180/62 giây; với nồng độ 2,5 ppm H₂S thì thời gian đáp ứng của cảm biến dây nano SnO₂ trước và sau khi biến tính lần lượt là 46/17 giây. Khi tăng nhiệt đô làm việc của cảm biến lên 300 °C, thời gian đáp ứng với khí H₂S của cảm biến cũng được cải thiện đáng kể, với nồng đô 0,25 và 2,5 ppm H_2S thời gian đáp ứng của cảm biến dây nano SnO₂ chưa biến tính lần lượt là 67/21 giây, còn thời gian đáp ứng cảm biến dây nano SnO₂ biến tính với hat CuO lần lượt là: 23/7 giây. Ngược lại, với thời gian đáp ứng, thời gian hồi phục (Hình 7 (c-d)) của cảm biến dây nano SnO₂ biến tính với CuO lai kém hơn khi cảm biến dây nano SnO2 chưa biến tính, ở nhiệt độ càng thấp thì độ hồi phục càng kém.

3.2.4. Ảnh hưởng nồng độ khí đến độ đáp ứng, thời gian đáp ứng và hồi phục của cảm biến

Vật liệu CuO biến tính trên bề mặt dây nano SnO₂ làm tăng tính chất nhạy khí đã được nhiều nhà khoa học quan tâm và cũng đã có nhiều công trình công bố, nhưng đa số đều nghiên cứu đáp ứng khí ở nồng độ cao mà chưa có nhiều công trình nghiên cứu ở nồng độ thấp, đặc biệt ở nồng độ cỡ vài ppb. Trong khi đó, khí H₂S với nồng độ cỡ 0,03 ppm đã ảnh hưởng đến sức khỏe của con người. Do vậy cần nghiên cứu cảm biến phát hiện được khí với nồng độ càng thấp càng tốt và điều đó rất sẽ có ý nghĩa trong quan trắc môi trường.

Hình 8. Độ đáp ứng biểu diễn theo nồng độ khí H₂S của cảm biến dây nano (a) SnO₂ và (b) SnO₂-CuO (10 mM Cu(NO₃)₂)

Kết quả độ đáp ứng khí (R_a/R_g) được tính toán từ đặc trưng hồi đáp (Hình 5) và được biểu diễn phụ thuộc theo nồng độ khí như trên Hình 8 ở các nhiệt đô làm việc khác nhau. Chúng tôi nghiên cứu cảm biến khí H₂S từ nồng độ 0,25 đến 2,5 ppm, thấy rằng độ đáp ứng khí tăng theo nồng độ, nồng độ càng cao thì đô đáp ứng càng tốt ở tất cả các nhiệt đô làm việc. Theo kết quả nghiên cứu từ phần trước, với cảm biến dây nano SnO₂ nhiệt độ làm việc tốt nhất là 250 °C, còn cảm biến dây nano SnO₂-CuO nhiệt độ làm việc tốt nhất là 150°C, do đó trên đồ thi ảnh hưởng của nồng đô đến đô đáp ứng khí cũng thể hiên điều đó. Với cảm biến dây nano SnO2 khi được biến tính CuO ở nồng độ 0,25 ppm độ đáp ứng khí đạt gần 66 lần; ở nồng độ 2,5 ppm độ đáp ứng tăng lên và đạt giá trị 2023 lần tại nhiệt độ 150 °C, trong khi đó cảm biến dây nano SnO₂ chưa biến tính chỉ đạt 2,36 lần tại nồng độ cao nhất là 2,5 ppm tai nhiệt đô 250 °C. Điều này chứng tỏ rằng việc biến tính CuO cho cảm biến khí H₂S trên cơ sở dây nano SnO₂ có độ đáp ứng tốt với khí H_2S ở tất cả nồng độ khí H₂S từ 0,25 đến 2,5 ppm.

Kết quả thời gian đáp ứng, hồi phục được tính toán từ đặc trưng nhạy khí (Hình 5) ở nhiệt độ 250 °C và biểu diễn phụ thuộc theo nồng độ như trên Hình 9. Qua việc nghiên cứu này, thấy rằng cảm biến khí H₂S khi biến tính CuO thời gian đáp ứng nhìn chung đã được cải thiện ở dải nồng độ từ 0,25 đến 2,5 ppm H₂S. Tuy nhiên thời gian hồi phục ở nồng độ cao vẫn chưa được cải thiện nhiều, nhưng thời gian hồi phục ở nồng độ thấp

(0,25 ppm) cũng được cải thiện từ 101 giây xuống còn 37 giây.

Hình 9. Thời gian đáp ứng và hồi phục của cảm biến trên cơ sở dây nano SnO₂ (a,c) trước và (b,d) sau khi biến tính với CuO (10 mM Cu(NO₃)₂) biểu diễn theo nồng độ ở 250 °C

Qua các nghiên cứu ta thấy rằng cảm biến dây nano SnO_2 được biến tính có độ đáp ứng tốt ở nhiệt độ thấp và điều này cũng đúng qua nghiên cứu ảnh hưởng của nồng độ đến tiền chất biến tính. Với nồng độ tiền chất là 1; 10 và 100 mM Cu(NO₃)₂ thì độ đáp ứng ở 200°C là tốt hơn ở 250°C và ngay cả với nồng độ tiền chất nhỏ là 1 mM thì độ đáp ứng cũng tốt hơn rất nhiều khi so sánh với dây nano SnO_2 chưa biến tính.

4. Kết luận

Việc biến tính CuO cho thấy cảm biến dây nano SnO_2 thể hiện đáp ứng khá tốt với khí H_2S trong khoảng nhiệt độ 150 - 400 °C. So với cảm biến dây nano chưa biến tính, cảm biến dây nano SnO_2 biến tính với CuO đáp ứng khá tốt ở cả nhiệt độ 150 °C. Như vậy. biến tính dây nano SnO_2 với CuO không những làm tăng độ đáp ứng với khí H_2S mà còn làm giảm nhiệt độ làm việc của cảm biến dây nano SnO_2 .

Bên cạnh đó, khi biến tính CuO thì thời gian đáp ứng cũng được cải thiện ở dải nồng độ từ 0,25 đến 2,5 ppm H₂S và thời gian hồi phục ở nồng độ thấp (0,25 ppm) cũng được cải thiện từ 101 giây xuống còn 37 giây.

TÀI LIỆU THAM KHẢO/ REFERENCES

 S. K. Pandey, K. -H. Kim, and K .-T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide," *TrAC Trends*

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn

in Analytical Chemistry, vol. 32, pp. 87-99, 2012, doi:10.1016/j.trac.2011.08.008.

- [2]. Y. Guan, C. Yin, X. Cheng, X. Liang, Q. Diao, and H. Zhang, "Sub-ppm H₂S sensor based on YSZ and hollow balls NiMn₂O₄ sensing electrode," *Sensors and Actuators B: Chemical*, vol. 193, pp. 501-508, 2014, doi:10.1016/j.snb.2013.11.072.
- [3]. N. V. Hieu, H. -R. Kim, B. -K. Ju, and J.-H. Lee, "Enhanced performance of SnO₂ nanowires ethanol sensor by functionalizing with La₂O₃," *Sensors and Actuators B: Chemical*, vol. 133, no. 1, pp. 228-234, 2008.
- [4]. I. -S. Hwang, J.-K. Choi, H.-S. Woo, S.-J. Kim, S.-Y. Jung, T.-Y. Seong, I.-D. Kim, and J.-H. Lee, "Facile control of C₂H₅OH sensing characteristics by decorating discrete Ag nanoclusters on SnO₂ nanowire networks," *ACS Applied Materials & Interfaces*, vol. 3, no. 8, pp. 3140-3145, 2011.
- [5]. D. D. Trung, L. D. Toan, H. S. Hong, T. D. Lam, T. Trung, and N. V. Hieu, "Selective detection of carbon dioxyde using LaOClfunctionalized SnO₂ nanowires for air-quality monitoring," *Talanta*, vol. 88, pp. 152-159, 2012.
- [6]. I.-S. Hwang, J.-K. Choi, S.-J. Kim, K.-Y. Dong, J.-H. Kwon, B.-K. Ju, and J.-H. Lee "Enhanced H₂S sensing characteristics of SnO₂ nanowires functionalized with CuO," *Sensors and Actuators B: Chemical*, vol. 142, pp. 105-110, 2009.

- [7]. J. M. Lee, J.-E. Park, S. Kim, S. Kim, E. Lee, S.-J. Kim, and W. Lee, "Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxyde nanostructures: room temperature operating sensors," *International Journal of Hydrogen Energy*, vol. 35, no. 22, pp. 12568-12573, 2010.
- [8]. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, and M. Mori "Microstructure and H₂ gas sensing properties of undoped and Pd-doped SnO₂ nanowires," *Sensors and Actuators B: Chemical*, vol. 135 no. 2, pp. 524-529, 2009.
- [9]. N. M. Shaalan, T. Yamazaki, and T. Kikuta "NO₂ response enhancement and anomalous behavior of n-type SnO₂ nanowires functionalized by Pd nanodots," *Sensors and Actuators B: Chemical*, vol. 166-167, pp. 671-677, 2002.
- [10]. H. Li, J. Xu, Y. Zhu, X. Chen, and Q. Xiang "Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO₂ nanowires," *Talanta*, vol. 82, no. 2, pp. 458-463, 2010.
- [11]. S.-W. Choi, S.-H. Jung, and S.S. Kim, "Significant enhancement of the NO₂ sensing capability in networked SnO₂ nanowires by Au nanoparticles synthesized via γ-ray radiolysis," *Journal of Hazardous Materials*, vol. 193, pp. 243-248, 2011.