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Abstract

By means of the Cornwall-Jackiw-Tomboulis effective potential, the condensate density of a
weakly interacting Bose gas confined between two hard walls is investigated within an
improved Hartree-Fock approximation (IHF). Our results show that the condensate density
in an IHF approximation is always bigger than the one in a double-bubble approximation
and that the condensate density strongly depends on the distance between two walls as well
as the gas parameter.
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Tém tit

Bang cach sir dung thé hiéu dung Cornwall-Jackiw-Tomboulis, chiing ti nghién Cuu mat
dé ngung tu ciia khi Bose twong tdc yéu bj giam gii gitta hai fuong cung trong gan ding
Hartree-Fock cai tien (IHF). Cac két qua cua chung t6i chi ra rang mat dé ngung tu trong
gdn diing IHF luén 1ém hon gid tri cia n6 trong gan ding hai vong va né phu thugc mgnh
vao khoang cach giita hai tiong cieng ciing nhir thong sé khi.
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1. INTRODUCTION

Although it was predicted in 1925, studies on Bose gas are, and will be, a current
problem in modern physics. There are numerous papers in this field, including ones on
the ground state (Ao & Chui, 1998; Barankov, 2002), surface tension and Antonov
wetting line (Indekeu, Lin, Nguyen, Schaeybroeck, & Tran, 2015; Nguyen & Hoang,
2018), dynamics of surface excitation (Indekeu, Nguyen, Lin, & Tran, 2018; Pethick &
Smith, 2008) and so on.

The finite-size effect on a Bose gas, which appears when one or more
dimensions of the space are reduced, is one of the most interesting problems in this
field, and one that has attracted the attention of many physicists. The forces on a single
Bose gas confined between two parallel plates were calculated by Nguyen (2018). The
influence of the finite-size effect on the order parameter and Casimir force was
considered in the improved Hartree-Fock approximation (Nguyen & Luong, 2018). The
finite-size effect was also investigated for two-component Bose-Einstein condensates
(Nguyen & Luong, 2017; Nguyen & Luong, 2019). However, these studies only
concentrate on the Casimir effect and surface tension. To our knowledge, the study of
the condensate density of a Bose gas under a finite-size effect constraint is still absent.

In studying properties of a Bose gas, the condensate density plays an important
role and, based on it, we are able to calculate every thermodynamic quantity. Up to now
two methods are usually employed to consider the condensate density of a Bose gas,
namely, Gross-Pitaevskii (GP) theory and quantum field theory in the formalism of the
Cornwall-Jackiw-Tomboulis (CJT) effective potential. However, in the GP theory, the
quantum fluctuations are neglected (Pethick & Smith, 2008), whereas these fluctuations
are taken into account in the CJT effective potential (Andersen, 2004) with several
levels of approximation, such as the one-loop, double-bubble, and improved Hartree-
Fock approximation. In this paper we consider the effect of the compaction in one
direction on the density of state by means of the CJT effective potential. In order to
obtain highly accurate results, the improved Hartree-Fock approximation (IHF), in which
the number of Goldstone bosons is conserved, is invoked (lvanov, Riek, & Knoll, 2005).

2. EQUATIONS OF STATE IN THE HARTREE-FOCK APPROXIMATION
To begin with, we consider a system of dilute Bose gas described by the

Lagrangian (Pethick & Smith, 2008) in Equation (1):

.0 K g 1
Loy -inl - w2 |y 2+ 9y, 1)
"”( ot 2m j"” gL

Which w =w/(F,t) is the field operator; m and x are the atomic mass and

chemical potential, respectively; 7% is Plack’s constant and coupling constant in
Equation (2):
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g =4xh’a, /Im>0 @)

determines the strength of repulsive intraspecies interactions via the scattering
length a, of the s-wave. Note that we neglect particle flow and external potential so that

the field operator is real.

We now establish the equations of state, which govern all changes in state of the
system. In order to do that, the field operator should be shifted (Andersen, 2004) in
Equation (3):

W_)V/O+%(Wl+il//2)’ 3

Where y, is the expectation value of the field operator in the tree-

approximation, which plays the role of order parameter, and v, ¥, are the quantum
fluctuations of the field. Putting (3) into Lagrangian (1) form one has the interacting
Lagrangian in the double-bubble approximation (Nguyen & Luong, 2018) in Equation (4):

L = %‘//0‘//1(‘//12 + l//zz) + % (l//l2 + l//zz)z- (4)

The Cornwall-Jackiw-Tomboulis (CJT) effective potential can be read off from (4):

VI =yl + Syt + 2 [Tr[In D (0 + D)D) ~1 ]+ 2 (B2 +P2)+ SRR,
2 25 8 4 (5)

With | being a unit matrix, k wave vector, notation 8 =1/k,T with Boltzmann
constant k; and temperature T. In Equation (5), D(k) is the propagator in the double-

bubble approximation, which is reduced, (5) and (6) is the inversion propagator in the
tree-approximation.

21,2
hzrl; +Zgl//§ —@,
Dgl(k): hzkz )
2m (6)

The Matsubara frequency for bosons is defined as @, =2zn/4,n=0,12...

o0 3_.
In Equation (5), we also use the notation: J' f (K) 1 > d—ksf (@,,k).
Y, Bi=.(2x)

By requiring the determinant to (6) vanish, the dispersion relation has the form (7):
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K2k? [ h°k?
E(k) = 2qw2 |. 7
()\/Zm(2m+g%j (7)

Equation (7) shows that in the tree approximation there is a Goldstone boson
associated with U(1) breaking. However, the CJT effective potential will not give any
Goldstone boson (Tran, Le, Nguyen, & Nguyen, 2009). To restore this boson, the
method proposed by Ivanov et al. (2005) is employed by adding a term into the CJT
effective potential (Nguyen & Luong, 2018) (Equation 8).

AV == 2 (RS +PL~2R,Py). ©®)

Combining Equations (5) and (8) one gets a new CJT effective potential
(Equation 9).

VET VT LAV =~y + Lyt +1jTr[|” D (k) +D,*(K)D(K) -1 |
27° " 24 ©)
3
+%(Pﬁ+P222)+Tg RiPs.

It is easy to verify that the CJT effective potential (9) reproduces the Goldstone
boson with a new dispersion relation (Tran et al., 2009) in Equation (10):

E(k):\/hzkz(""zkz +|v|j, (10)

2m | 2m

With M being the effective mass. This is the reason why this approximation is
called the IHF approximation. Minimizing Equation (9) with respect to the order
parameter and elements of the propagator one arrives at the gap Equation (11).

3
_ﬂ+g‘//§+?gpu+%|322=0' (11)

and the Schwinger-Dyson (SD) Equation (12):

3
M = —p+305 + 2 Ry + =) Py (12)

Equation (11) and (12) are called equations of state, which allow us to calculate
the effective mass M, and especially the order parameter y, and therefore the

condensate density in Equation (13):

Po=Vs- (13)
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In order to proceed further, one has to work with momentum integrals P, and P,,.
At zero temperature, these integrals become (Nguyen & Luong, 2019) in Equation (14):

1¢ d%k ( #*k*/2m 1¢ d*k (A%k*/2m+M
P == Po== , 14
" ZI(Zﬂ)Z(h2k2/2m+M] ? zj(zﬁ)z( n°k? 1 2m j (4

3. DENSITY OF CONDENSATE OF WEAKLY INTERACTING BOSE GAS
CONFINED BETWEEN TWO HARD WALLS

Consider a weakly interacting Bose gas confined between two hard walls. These
walls are perpendicular to the 0z axis and separated at distance ¢, along the

Ox, Oy directions, the system under consideration is translational. Because of the
compaction in the z-direction, the wave vector is quantized in Equation (15):

k? >k?+k?, j=1,23.. (15)

Which k, and k; are perpendicular to and parallel with 0z. For a boson system,
the periodic boundary condition is employed at the hard walls (Nguyen, 2018) in
Equation (16):

K — 27zj

= ,JeZ (16)

For simplicity, one now converts all relevant quantities into dimensionless form
by introducing the healing length §:h/m with n, being the bulk density. The
dimensionless length is L=/¢/&,7=2z/& and the dimensionless wave vector is x =k¢&.
Equation (15) can be rewritten as «* —&? +x; and the momentum integrals (14)
become Equation (17):

= K2+t
Pll 4§IKdKZ[%J’P22 4§J.Kd’<z

2 2 2
K +Kx;+M
= KJ_+KJ-+M ft

17
st w

Where M =M /gn,and A is a momentum cut-off, which is introduced to avoid
the UV-divergence in integrating over x,. The summation in Equation (17) can be dealt

with the aid of the Euler-Maclaurin formula (Arfken & Weber, 2005) and then by
taking A — oo one obtains in Equation (18):

mgno M 12

R,=0,P, = .
12h%EL (18)
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We now move to study the density of condensate. To do this, equations of state
should be reduced to dimensionless form by using ¢, =y, /\/E keeping in mind that

the system under consideration is connected to a particle reservoir, which associates
with a grand canonical ensemble. Substituting Equation (18) and (2) into Equation (11)
and (12) one has the equations of state in dimensionless form in Equation (19):

3,12 1/2 3,12 12
27°n;°M 27°n; M

1+ g7+ 5 =0 M=-143¢+ : (19)

Which ng = ngad « 1 because of the condition for a dilute Bose gas, and it is
called the gas parameter (Pethick & Smith, 2008). The solution for Equation (19) can be
easily found by Equation (20):

3/2,,1/2
g =1+ Z”SLHS M =2. (20)
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Figure 1. Density of condensate versus the distance L
Note: The red and blue lines correspond to 0, / Ny and oy / Ny

Combining (20) and (13) one finds the density of condensate (Equation 21):

2 3/2,,1/2
Po=N, (1+7[—ns .

3L (21)

As an illustration for the above calculations, numerical computations are made

for rubidium Rb87 (Egorov et al., 2013) with m=86.9u, a, = 50,&, 5:4000,&. The

result for p, / n, versus dimensionless distance is shown in Figure 1 by the red line. Let

us now investigate the condensate density starting from the CJT effective potential. To
this end, one begins with the definition of the pressure (Equation 22):
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P—_V ﬂCJT (22)

P 1
atminimum

Which the subscript “at minimum” means that the CJT effective potential is
taken providing that it consists with (11) and (12). The density of condensate in the IHF
approximation is now defined by Equation (23):

oP
P = @_ (23)
u
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Figure 2. The n- dependence of density of condensate

Note: The red and blue lines correspond to p, / Ny and Py / Ny.

Plugging (9) into (23) leads to Equation (24):
2 1
Pr =V t E (Ry+Py). (24)

From (18), (20), and (24), the density of condensate in the IHF approximation
becomes Equation (25):

472_3/2n1/2 )

=n,| 1+———|.
Piur o( 3L

(25)

The blue line in Figure 1 graphically shows the evolution of p,,. as a function
of dimensionless distance L with the same parameters as for the red line. It is clear that
both p, and p, are divergent when the distance approaches zero and decay rapidly
when the distance increases. Both tend to n, at large L, at which the influence of the

finite-size effect can be ignored. At a given value of the distance between two hard
walls, the density of condensate in the IHF approximation is always the same in both
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mean field theory and one-loop approximation. This fact is explained due to the
contribution of the last term in the right-hand side of (24) and (25). Physically, it is the
contribution of the high-order term in the interacting Lagrangian (4) so that this is a
more exact result for the density of condensate in comparison with the others.

Figure 2 shows the evolution of p, (red line) and p,,. (blue line) as functions of
the gas parameter n, with the same parameters as in Figure 1, the black line corresponds

to the condensate density in the one-loop approximation. For each value of the gas
parameter, the p,,- is larger than the condensate density in both the tree-approximation

and the one-loop approximation because of the contribution from high-order diagrams.
Note that our system is connected to the particle reservoir so that the density of
condensate increases as the gas parameter increases, which is a consequence of

increasing the bulk density no. An important result is that at n,=0 one has
Po = Pwe =Ny- This means that, for an ideal Bose gas, the one-loop approximation is
accurate enough to study the condensate density.

4. CONCLUSIONS AND DISCUSSIONS

In the foregoing sections, using mean field theory in the formalism of Cornwall-
Jackiw-Tomboulis effective potential with the improved Hartree-Fock approximation,
which conserves the number of Goldstone bosons, we studied the density of condensate
of a dilute Bose gas confined between two plates. Our main results are, in order:

e Because of the very small gas parameter, analytical relations for p, and

P are attained. Their values are equal to those in the tree approximation

after adding an extra term, which depends on the distance between two hard
walls and the gas parameter;

e Our analytical solutions and numerical computations show that when the
gas parameter is fixed and at a given value of the distance L, p, is always
greater than p, . The difference is explained due to the contribution of high
order diagrams in the IHF approximation;

e By considering the effect from the gas parameter we proved that for an
ideal Bose gas, the one-loop approximation is adequate for considering the
density of condensate.

Based on this result, it is possible to study the influence of the finite-size effect
on the pressure of a Bose gas as well as the density of condensate of a binary mixture of
Bose gases.
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