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Abstract 

By means of the Cornwall-Jackiw-Tomboulis effective potential, the condensate density of a 

weakly interacting Bose gas confined between two hard walls is investigated within an 

improved Hartree-Fock approximation (IHF). Our results show that the condensate density 

in an IHF approximation is always bigger than the one in a double-bubble approximation 

and that the condensate density strongly depends on the distance between two walls as well 

as the gas parameter.  
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approximation. 
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Tóm tắt 

Bằng cách sử dụng thế hiệu dụng Cornwall-Jackiw-Tomboulis, chúng tôi nghiên cứu mật 

độ ngưng tụ của khí Bose tương tác yếu bị giam giữ giữa hai tường cứng trong gần đúng 

Hartree-Fock cải tiến (IHF). Các kết quả của chúng tôi chỉ ra rằng mật độ ngưng tụ trong 

gần đúng IHF luôn lớn hơn giá trị của nó trong gần đúng hai vòng và nó phụ thuộc mạnh 

vào khoảng cách giữa hai tường cứng cũng như thông số khí.  

Từ khóa: Gần đúng Hartree-Fock cải tiến; Hiệu ứng kích thước hữu hạn; Khí Bose; Mật độ 

ngưng tụ. 
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1. INTRODUCTION 

Although it was predicted in 1925, studies on Bose gas are, and will be, a current 

problem in modern physics. There are numerous papers in this field, including ones on 

the ground state (Ao & Chui, 1998; Barankov, 2002), surface tension and Antonov 

wetting line (Indekeu, Lin, Nguyen, Schaeybroeck, & Tran, 2015; Nguyen & Hoang, 

2018), dynamics of surface excitation (Indekeu, Nguyen, Lin, & Tran, 2018; Pethick & 

Smith, 2008) and so on.  

The finite-size effect on a Bose gas, which appears when one or more 

dimensions of the space are reduced, is one of the most interesting problems in this 

field, and one that has attracted the attention of many physicists. The forces on a single 

Bose gas confined between two parallel plates were calculated by Nguyen (2018). The 

influence of the finite-size effect on the order parameter and Casimir force was 

considered in the improved Hartree-Fock approximation (Nguyen & Luong, 2018). The 

finite-size effect was also investigated for two-component Bose-Einstein condensates 

(Nguyen & Luong, 2017; Nguyen & Luong, 2019). However, these studies only 

concentrate on the Casimir effect and surface tension. To our knowledge, the study of 

the condensate density of a Bose gas under a finite-size effect constraint is still absent. 

In studying properties of a Bose gas, the condensate density plays an important 

role and, based on it, we are able to calculate every thermodynamic quantity. Up to now 

two methods are usually employed to consider the condensate density of a Bose gas, 

namely, Gross-Pitaevskii (GP) theory and quantum field theory in the formalism of the 

Cornwall-Jackiw-Tomboulis (CJT) effective potential. However, in the GP theory, the 

quantum fluctuations are neglected (Pethick & Smith, 2008), whereas these fluctuations 

are taken into account in the CJT effective potential (Andersen, 2004) with several 

levels of approximation, such as the one-loop, double-bubble, and improved Hartree-

Fock approximation. In this paper we consider the effect of the compaction in one 

direction on the density of state by means of the CJT effective potential. In order to 

obtain highly accurate results, the improved Hartree-Fock approximation (IHF), in which 

the number of Goldstone bosons is conserved, is invoked (Ivanov, Riek, & Knoll, 2005).  

2. EQUATIONS OF STATE IN THE HARTREE-FOCK APPROXIMATION 

To begin with, we consider a system of dilute Bose gas described by the 

Lagrangian (Pethick & Smith, 2008) in Equation (1):  

2
2 2 4* ,

2 2

g
L i

t m
   

 
= − −  − + 

 

 (1)  

Which ( , )r t =  is the field operator; m and   are the atomic mass and 

chemical potential, respectively;  is Plack’s constant and coupling constant in 

Equation (2):  
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24 / 0sg a m= 
 (2) 

determines the strength of repulsive intraspecies interactions via the scattering 

length sa  of the s-wave. Note that we neglect particle flow and external potential so that 

the field operator is real. 

We now establish the equations of state, which govern all changes in state of the 

system. In order to do that, the field operator should be shifted (Andersen, 2004) in 

Equation (3):  

 
0 1 2

1
( ),

2
i   → + +    (3)  

Where 0  is the expectation value of the field operator in the tree-

approximation, which plays the role of order parameter, and 𝜓1, 𝜓2 are the quantum 

fluctuations of the field. Putting (3) into Lagrangian (1) form one has the interacting 

Lagrangian in the double-bubble approximation (Nguyen & Luong, 2018) in Equation (4):  

           2 2 2 2 2

int 0 1 1 2 1 2( ) ( ) .
2 8

g g
L      = + + +   (4) 

 The Cornwall-Jackiw-Tomboulis (CJT) effective potential can be read off from (4): 

2 4 1 1 2 2

0 0 0 11 22 11 22

1 3
ln ( ) ( ) ( ) ( ) ,

2 2 8 4

CJT g g g
V Tr D k D k D k I P P P P



  − − = − + + + − + + + 
(5)

 With I being a unit matrix, k  wave vector, notation 1/ Bk T =  with Boltzmann 

constant Bk  and temperature T. In Equation (5), ( )D k  is the propagator in the double-

bubble approximation, which is reduced, (5) and (6) is the inversion propagator in the 

tree-approximation.    

2 2
2

0
1

0 2 2

2
2

( ) ,

2

n

n

k
g

m
D k

k

m

 



−

 
+ − 

 =
 
 
    (6) 

The Matsubara frequency for bosons is defined as 2 / , 0,1,2...n n n  = =  

In Equation (5), we also use the notation: 
3

3

1
( ) ( , ).

(2 )
n

n

d k
f k f k




 



=−

=   

By requiring the determinant to (6) vanish, the dispersion relation has the form (7): 
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2 2 2 2

2

0( ) 2 .
2 2

k k
E k g

m m


 
= + 

 
   (7) 

Equation (7) shows that in the tree approximation there is a Goldstone boson 

associated with U(1) breaking. However, the CJT effective potential will not give any 

Goldstone boson (Tran, Le, Nguyen, & Nguyen, 2009). To restore this boson, the 

method proposed by Ivanov et al. (2005) is employed by adding a term into the CJT 

effective potential (Nguyen & Luong, 2018) (Equation 8). 

 2 2

11 22 11 22( 2 ).
4

g
V P P P P = − + −   (8) 

Combining Equations (5) and (8) one gets a new CJT effective potential 

(Equation 9). 

2 4 1 1

0 0 0

2 2

11 22 11 22

1
ln ( ) ( ) ( )

2 2

3
( ) .

8 4

CJT CJT g
V V V Tr D k D k D k I

g g
P P P P

 



  − − = +  = − + + + − 

+ + +


  (9) 

 It is easy to verify that the CJT effective potential (9) reproduces the Goldstone 

boson with a new dispersion relation (Tran et al., 2009) in Equation (10): 

  
2 2 2 2

( ) ,
2 2

k k
E k M

m m

 
= + 

 
  (10) 

 With M being the effective mass. This is the reason why this approximation is 

called the IHF approximation. Minimizing Equation (9) with respect to the order 

parameter and elements of the propagator one arrives at the gap Equation (11). 

2

0 11 22

3
0,

2 2

g g
g P P − + + + =   (11)   

and the Schwinger-Dyson (SD) Equation (12):  

2

0 11 22

3
3 .

2 3

g g
M g P P = − + + +   (12)  

Equation (11) and (12) are called equations of state, which allow us to calculate 

the effective mass M, and especially the order parameter 0  and therefore the 

condensate density in Equation (13): 

 2

0 0 . =   (13) 
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In order to proceed further, one has to work with momentum integrals 11P  and 22.P  

At zero temperature, these integrals become (Nguyen & Luong, 2019) in Equation (14): 

3 2 2 3 2 2

11 222 2 2 2 2 2

1 / 2 1 / 2
, .

2 (2 ) / 2 2 (2 ) / 2

d k k m d k k m M
P P

k m M k m 

   +
= =   

+   
    (14) 

3. DENSITY OF CONDENSATE OF WEAKLY INTERACTING BOSE GAS 

CONFINED BETWEEN TWO HARD WALLS 

 Consider a weakly interacting Bose gas confined between two hard walls. These 

walls are perpendicular to the 0z axis and separated at distance , along the  

0x, 0y directions, the system under consideration is translational. Because of the 

compaction in the z-direction, the wave vector is quantized in Equation (15): 

2 2 2, 1,2,3...jk k k j⊥→ + =   (15) 

Which k⊥  and jk are perpendicular to and parallel with 0z. For a boson system, 

the periodic boundary condition is employed at the hard walls (Nguyen, 2018) in 

Equation (16): 

2
, .j

j
k j


= Z   (16) 

For simplicity, one now converts all relevant quantities into dimensionless form 

by introducing the healing length 
0/ 2mgn =  with 0n  being the bulk density. The 

dimensionless length is / , /L z  = =  and the dimensionless wave vector is .k =  

Equation (15) can be rewritten as 2 2 2

j  ⊥→ +  and the momentum integrals (14) 

become Equation (17):  

2 2 2 2 2

11 223 2 2 2 3 2 2

0 0

1 1
, ,

4 4

j j

j jj j

P d P d
   

   
     

  
⊥ ⊥

⊥ ⊥ ⊥ ⊥

=− =−⊥ ⊥

   + + +
= =      + + +   

  
M

M
  (17) 

Where 0/M gn=M and   is a momentum cut-off, which is introduced to avoid 

the UV-divergence in integrating over .n  The summation in Equation (17) can be dealt 

with the aid of the Euler-Maclaurin formula (Arfken & Weber, 2005) and then by 

taking  →   one obtains in Equation (18): 

 

1/20
11 22 2

0, .
12

mgn
P P

L
= = M

  (18)   
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 We now move to study the density of condensate. To do this, equations of state 

should be reduced to dimensionless form by using 
0 0 0/ n =  keeping in mind that 

the system under consideration is connected to a particle reservoir, which associates 

with a grand canonical ensemble. Substituting Equation (18) and (2) into Equation (11) 

and (12) one has the equations of state in dimensionless form in Equation (19):  

  
3 1/2 1/2

2

0

2
1 0,

3

sn

L


− + + =

M 3 1/2 1/2
2

0

2
1 3 ,sn

L


= − + +

M
M   (19) 

Which  𝑛𝑠 = 𝑛0𝑎𝑠
3 ≪ 1 because of the condition for a dilute Bose gas, and it is 

called the gas parameter (Pethick & Smith, 2008). The solution for Equation (19) can be 

easily found by Equation (20): 

         
3/2 1/2

2

0

2
1 , 2.

3

sn

L


 = + =M   (20) 

 

Figure 1. Density of condensate versus the distance L  

Note: The red and blue lines correspond to 0 0/ n  and 0/ .IHF n  

Combining (20) and (13) one finds the density of condensate (Equation 21): 

3/2 1/2

0 0

2
1 .

3

sn
n

L




 
= + 

 
  (21) 

 As an illustration for the above calculations, numerical computations are made 

for rubidium Rb87 (Egorov et al., 2013) with 86.9u,m =  
o

50 A,sa =  
o

4000A. =   The 

result for 0 0/ n  versus dimensionless distance is shown in Figure 1 by the red line. Let 

us now investigate the condensate density starting from the CJT effective potential. To 

this end, one begins with the definition of the pressure (Equation 22):  
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at minimum
,CJTP V= −   (22)  

Which the subscript “at minimum” means that the CJT effective potential is 

taken providing that it consists with (11) and (12). The density of condensate in the IHF 

approximation is now defined by Equation (23): 

 .IHF

P





=


  (23) 

 

Figure 2. The    - dependence of density of condensate 

Note: The red and blue lines correspond to 0 0/ n  and 0/ .IHF n   

Plugging (9) into (23) leads to Equation (24): 

2

0 11 22

1
( ).

2
IHF P P = + +   (24) 

From (18), (20), and (24), the density of condensate in the IHF approximation 

becomes Equation (25): 

 
3/2 1/2

0

4
1 .

3

s
IHF

n
n

L




 
= + 

 
  (25) 

 The blue line in Figure 1 graphically shows the evolution of IHF  as a function 

of dimensionless distance L with the same parameters as for the red line. It is clear that 

both 0  and IHF  are divergent when the distance approaches zero and decay rapidly 

when the distance increases. Both tend to 0n  at large L, at which the influence of the 

finite-size effect can be ignored. At a given value of the distance between two hard 

walls, the density of condensate in the IHF approximation is always the same in both 
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mean field theory and one-loop approximation. This fact is explained due to the 

contribution of the last term in the right-hand side of (24) and (25). Physically, it is the 

contribution of the high-order term in the interacting Lagrangian (4) so that this is a 

more exact result for the density of condensate in comparison with the others.  

Figure 2 shows the evolution of 0  (red line) and IHF (blue line) as functions of 

the gas parameter sn with the same parameters as in Figure 1, the black line corresponds 

to the condensate density in the one-loop approximation. For each value of the gas 

parameter, the IHF  is larger than the condensate density in both the tree-approximation 

and the one-loop approximation because of the contribution from high-order diagrams. 

Note that our system is connected to the particle reservoir so that the density of 

condensate increases as the gas parameter increases, which is a consequence of 

increasing the bulk density n0. An important result is that at 0sn =  one has 

0 0.IHF n = =  This means that, for an ideal Bose gas, the one-loop approximation is 

accurate enough to study the condensate density.  

4. CONCLUSIONS AND DISCUSSIONS  

 In the foregoing sections, using mean field theory in the formalism of Cornwall-

Jackiw-Tomboulis effective potential with the improved Hartree-Fock approximation, 

which conserves the number of Goldstone bosons, we studied the density of condensate 

of a dilute Bose gas confined between two plates. Our main results are, in order: 

• Because of the very small gas parameter, analytical relations for 0  and 

IHF are attained. Their values are equal to those in the tree approximation 

after adding an extra term, which depends on the distance between two hard 

walls and the gas parameter;  

• Our analytical solutions and numerical computations show that when the 

gas parameter is fixed and at a given value of the distance L, IHF  is always 

greater than 0 . The difference is explained due to the contribution of high 

order diagrams in the IHF approximation; 

• By considering the effect from the gas parameter we proved that for an 

ideal Bose gas, the one-loop approximation is adequate for considering the 

density of condensate. 

 Based on this result, it is possible to study the influence of the finite-size effect 

on the pressure of a Bose gas as well as the density of condensate of a binary mixture of 

Bose gases. 
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