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ABSTRACT 
Ritt's Second Theorem described polynomial solutions of the functional equation P (f ) = Q(g), where 

P, Q are polynomials. In this paper, using techniques of value distribution theory into account the 

special properties of L - functions, we describe solutions of the above equation  for  L - functions and 

a class of polynomials of Fermat-Waring type. Namely, use Lemma 2.1, Lemma 2.2, and Lemma 2.5, 

we study conditions to equations in the Theorem 1.1 have solutions on sets of L - functions in the 

extended Selberg class. Then we apply the obtained results from the Theorem 1.1, and use Lemma 2.3, 

Lemma 2.4, and Lemma 2.6 to study the uniqueness problem for L - functions sharing finite set in the 

Theorem 1.2. 
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TÍNH DUY NHẤT CỦA L – HÀM TRONG LỚP SELBERG MỞ RỘNG 

 

Nguyễn Duy Phương 
Trung tâm Giáo dục Quốc phòng và An ninh – ĐH Thái Nguyên 

 
TÓM TẮT 

Định lí Ritt thứ hai cho ta nghiệm đa thức của phương trình hàm P (f) = Q (g), trong đó P, Q là đa 

thức. Trong bài báo này, sử dụng các kỹ thuật của lý thuyết phân phối giá trị có tính đến các thuộc 

tính đặc biệt của L - hàm, chúng tôi nghiên cứu phương trình hàm đa thức trên cho L - hàm và một 

lớp đa thức loại Fermat-Waring. Cụ thể, sử dụng Bổ đề 2.1, Bổ đề 2.2 và Bổ đề 2.5, chúng tôi nghiên 

cứu điều kiện để các phương trình trong Định lý 1.1 có nghiệm trên tập của L - hàm trong lớp Selberg 

mỏ rộng. Sau đó, chúng tôi áp dụng các kết quả thu được từ Định lý 1.1 và sử dụng Bổ đề 2.3, Bổ 

đề 2.4 và Bổ đề 2.6 để nghiên cứu vấn đề duy nhất cho các L - hàm nhận chung các tập hữu hạn 

trong Định lý 1.2. 
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1 Introduction

In 1922, Ritt ([1]) studied functional equa-
tion P (f) = Q(g), where P,Q are polyno-
mials, and described it’s polynomial solu-
tions. Since the paper of Ritt ([1]), the func-
tional equation P (f) = Q(g), where P,Q are
polynomials, has been investigated by many
authors (see [2]- [6]). Pakovich [5] studied
the functional equation P (f) = Q(g), where
P,Q are polynomials, and f, g are entire
functions. Khoai-An-Hoa [6] considered the
functional equation of the form P (f) =
Q(g), where P and Q are Yi’s polynomi-
als and then apply the obtained results to
study the uniqueness problem for meromor-
phic functions sharing two subsets.

Now let us recall some basic notions. Let C
denote the complex plane. By a meromor-
phic function we mean a meromorphic func-
tion in the complex plane C.We assume that
the reader is familiar with the notations of
Nevanlinna theory and of L-functions in the
Selberg class(see [7-16]). In this paper, we
discuss the Ritt’s Second Theorem for L -
functions and meromorphic functions. As a
application, we present a uniqueness theo-
rem for L - functions when the functions
share values in a finite set.

Now let us describe the main results of the
paper.

The Ritt’s Second Theorem for L - functions
is as following.

Theorem 1.1. Let a, b, c, c1 ∈ C, a 6= 0,
b 6= 0, c 6= 0, q be a positive integer.

Then

1. The functional equation

xq + a = c(yq + b)(q ≥ 3)

has a pair (L1, L2) of non-constant L - func-
tion solutions if and only if L1 = L2, a = b,
c = 1.

2. The functional equation

1

xq + a
=

c

yq + b
+ c1(q ≥ 3)

has a pair (L1, L2) of non-constant L - func-
tion solutions if and only if L1 = L2, a = b,
c = 1, c1 = 0.

3. The functional equation

xqyq = a

has no non-constant L - function solutions
(L1, L2).

Now let a, b, c ∈ C, a 6= 0, b 6= 0, c 6= 0, q be
a positive integer, and consider polynomials
without multiple zero given by

P (z) = zq + a, Q(z) = zq + b, (1.1)

we obtain the following result.

Theorem 1.2. Let L1 and L2 be two non-
constant L - functions. Let P , Q be poly-
nomials of the form (1.1), and S, T are re-
spective sets of zeros of P (z), Q(z). Then
L1 = L2 and P = Q if one of the following
conditions is satisfied:

1. q ≥ 8 and EL1(S) = EL2(T );

2. q ≥ 3 and EL1(S) = EL2(T ), a 6= −1,
b 6= −1;

3. q ≥ 1 and EL1(S) = EL2(T ), a = b 6= −1
.

2 Some lemmas

We need some lemmas.

Lemma 2.1. [10] Let f be a non-constant
meromorphic function on C and let a1, a2, ...,
aq be distinct points of C ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑
i=1

N(r,
1

f − ai
) + S(r, f),
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where S(r, f) = o(T (r, f)) for all r, except
for a set of finite Lebesgue measure.

Lemma 2.2. [6] For any nonconstant
meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).

Lemma 2.3. [6] Let f and g be two non-
constant meromorphic functions. If Ef (1) =
Eg(1), then one of the following three rela-
tions holds:

1.

T (r, f) ≤ N2(r, f) +N2(r,
1

f
) +N2(r, g)

+N2(r,
1

g
) + 2(N(r, f) +N(r,

1

f
))

+N(r, g) +N(r,
1

g
) + S(r, f) + S(r, g),

and the same inequality holds for T (r, g);

2. fg ≡ 1;

3. f ≡ g.

Lemma 2.4. [13] Let L be an non-constant
L - function. Then

1. T (r, L) = dL
π r log r + O(r), where dL =

2
∑K

i=1 λi be the degree of L - function and
K,λi are respectively the positive integer and
positive real number in the functional equa-
tion of the definition of L - functions;

2. N(r, 1
L) = dL

π r log r + O(r), N(r, L) =
S(r, L).

Lemma 2.5. [16] Let L1, ..., LN be distinct
non-constant L - functions. Then L1, ..., LN
are linearly independent over C.

Lemma 2.6. [13] Let L be an non-constant
L - functions and a ∈ C. Then equation
L = a has infinitely many solutions.

3 Proof of Theorems

Now we use the above Lemmas to prove the
main result of the paper.

Proof of Theorem 1.1. 1. The sufficient con-
dition of the theorem is easily seen. Now we
show the necessary condition. Assume that

xq + a = c(yq + b)(q ≥ 3) (3.1)

has a pair (L1, L2) of non-constant L - func-
tion solutions. Then

Lq1 + a− cb = cLq2.

Suppose a − cb 6= 0. Then, by Lemma
2.1, and note that N(r, L1) = S(r, L1),
N(r, L2) = S(r, L2), we obtain

qT (r, L1) + S(r, L1) = T (r, Lq1)

≤ N(r, L1) +N(r,
1

L1
)

+N(r,
1

Lq1 + a− bc
) + S(r, L1)

≤ N(r,
1

L1
) +N(r,

1

L2
)

+S(r, L1) ≤ T (r, L1) + T (r, L2) + S(r, L1).

Similarly

qT (r, L2) + S(r, L2) ≤ T (r, L2) + T (r, L1)

+S(r, L2).

Therefore

q(T (r, L1)+q(T (r, L2)) ≤ 2(T (r, L1)+T (r, L2))

+S(r, L1) + S(r, L2),

(q−2)(T (r, L1)+T (r, L2) ≤ S(r, L1)+S(r, L2).

This is a contradiction to the assumption
that q ≥ 3. So a − cb = 0. Then Lq1 = cLq2.
From this L2 = tL1, t

qc = 1. Applying
Lemma 2.5 we have L1 = L2 and therefore
t = 1, a = b, c = 1.
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2. The sufficient condition of the theorem is
easily seen. Now we show the necessary con-
dition. Assume that

1

xq + a
=

c

yq + b
+ c1 (3.2)

has a pair (L1, L2) of non-constant L - func-
tion solutions. Then

1

Lq1 + a
=

c

Lq2 + b
+ c1.

We shall prove that c1 = 0. Suppose, to the
contrary, c1 6= 0. Note that when considering
L-functions, these functions have only one
possible pole at s = 1. Write

L1(s) =
L10(s)

(s− 1)m1
, L2(s) =

L20(s)

(s− 1)m2
,

m1 ≥ 0,m2 ≥ 0,

where Li(s), and (s − 1)mi , i = 1, 2, has no
common zero. From this and (3.2) we get

(s− 1)qm1

Lq10(s) + a(s− 1)qm1
=

c(s− 1)qm2

Lq20(s) + b(s− 1)qm2

+c1. (3.3)

By c1 6= 0 we have

m1.m2 = 0. (3.4)

We recall that P (x) = xq+a, Q(y) = yq+ b.
Put R(y) = Q(y) + c

c1
. Suppose that R(z)

has distinct zeros e1, e2, ..., ek with respec-
tive multiplicities l1, l2, ..., lk, 1 ≤ k ≤ q, so
that l1 + · · ·+ lk = q. Then we get

Q(L2)

c1P (L1)
= Q(L2) +

c

c1
= R(L2)

= (L2 − e1)l1 ...(L2 − ek)lk ,

(s− 1)q(m1−m2)(Lq20(s) + b(s− 1)qm2)

c1(L
q
10(s) + a(s− 1)qm1)

= (L2 − e1)l1 ...(L2 − ek)lk . (3.5)

Note that L2 − ei, i = 1, ..., k, always has
zeros. Then, if s0 be a zero of L2 − ei, then

Q(L2(s0))

c1P (L1(s0))
= 0, Q(L2(s0)) +

c

c1
= 0,

(s0 − 1)q(m1−m2)(Lq20(s0) + b(s0 − 1)qm2)

c1(L
q
10(s0) + a(s0 − 1)qm1)

= 0. (3.6)

Since (3.6) and c, c1 6= 0 we get Q(L2(s0)) =
− c
c1
6= 0. Therefore Lq20(s0)+ b(s0− 1)qm2 6=

0. So (s0 − 1)q(m1−m2) = 0. It follows that
m1 > m2. Consider (3.5). Write

P (z) = (z − a1)...(z − aq),

P (L1) = (L1 − a1)...(L1 − aq).
From (3.5), (3.6) and note that L1 − ai,
i = 1, ..., q, always has zeros we have L2

has pole at s = 1. Thus m2 > 0 . By
m1 > m2 > 0 and (3.4), (3.5) we have a
contradiction.

Thus c1 = 0. Therefore P (L1) = CQ(L2).
Applying Part i) we get L1 = L2, a = b,
c = 1, c1 = 0.

3. Suppose, to the contrary, functional equa-
tion

xqyq = a

has a non-constant L - function solution
(L1, L2). Then

Lq1L
q
2 = a.

Note that L1, L2 have only one possible pole
at s = 1. Onthe other hand L1, L2 have in-
finitely zeros. Therefore, there is a s0 6= 1
such that L1(s0) = 0. So a = 0. A contradic-
tion to assumption that a = 0.

Proof of Theorem 1.2.

Proof of Part 1. Set F =
Lq
1
−a , G =

Lq
2
−b ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) +
S(r, g). By EL1(S) = EL2(S) it follow that
EF (1) = EG(1). Then, applying Lemma 2.3
to the F , G we consider the following cases:
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Case 1.

T (r, F ) ≤ N2(r, F ) +N2(r,
1

F
)

+N2(r,G)+N2(r,
1

G
)+2(N(r, F )+N(r,

1

F
))

+N(r,G) +N(r,
1

G
) + S(r),

T (r,G) ≤ N2(r, F ) +N2(r,
1

F
)

+N2(r,G)+N2(r,
1

G
)+2(N(r,G)+N(r,

1

G
))

+N(r, F ) +N(r,
1

F
) + S(r). (3.7)

Noting that

N(r, L1) = S(r, L1), N(r, L2) = S(r, L2),

N(r, F ) = N(r, L1) = S(r, L1),

N(r, F ) = N(r, L1) = S(r, L1),

N2(r, F ) = 2N(r, L1) = S(r, L1), N2(r,G)

= 2N(r, L2) = S(r, L2), N2(r,
1

F
) = 2N(r,

1

L1
)

N2(r,
1

G
) = 2N(r,

1

L2
). (3.8)

From (3.7), (3.8) we obtain

T (r, F ) = qT (r, L1)

≤ 4N(r,
1

L1
) + 3N(r,

1

L2
) + S(r)

≤ 4T (r, L1) + 3T (r, L1) + S(r),

T (r,G) = qT (r, L2)

≤ 3N(r,
1

L1
) + 4N(r,

1

L2
) + S(r)

≤ 3T (r, L1) + 4T (r, L1) + S(r).

Therefore

qT (r) ≤ 7T (r) + S(r), (q − 7)T (r) ≤ S(r).

This is a contradiction to the assumption
that q ≥ 8.

Case 2. F.G = 1. This mean Lq
1
−a

Lq
2
−b = 1 or

Lq1L
q
2 = A,A 6= 0. Applying Theorem 1.1 we

obtain a contradiction.

Case 3. F = G. This mean Lq
1
−a =

Lq
2
−b or

Lq1 = CLq2. Applying Theorem 1.1 we get
L1 = L2 and therefore a = b.

Proof of Part 2. We first prove that L1+a =
c(L2 + b). We consider the following cases:

Case 4. L1(s), L2(s) are both entire func-
tions and share the respective sets S, T CM,
where S =

{
a1, ..., aq

}
with P (z) = (z −

a1)...(z − aq), and T =
{
b1, ..., bq

}
with

Q(z) = (z − b1)...(z − bq). Then, we obtain
an entire function

l(s) =
(L1 − a1)...(L1 − aq)
(L2 − b1)...(L2 − bq)

,

with l(s) 6= 0,∞ for all s ∈ C. By the First
Fundamental Theorem,

T (r,
1

L2 − bi
) = T (r, L2) +O(1), i = 1, ..., q.

Denote the order of a meromorphic function
f by ρ(f), then it follows that

ρ(
1

L2 − bi
) = ρ(L2) = 1.

Moreover,

ρ(L1 − ai) = ρ(L1) = 1, i = 1, ..., q.

Since the order of a finite product of func-
tions of finite order is less then or equal to
the maximum of the order of these factors
(see [17]), we have ρ(l) ≤ 1. This implies
that l(s) is of the form l(s) = eAs+B where
A,B are constants. Since

lim
s→+∞

Li(s) = 1,

we get

lim
s→+∞

l(s) = lim
s→+∞

(L1 − a1)...(L1 − aq)
(L2 − b1)...(L2 − bq)

=
P (1)

Q(1)
.

This implies that A = 0, that is, l(s) = c.
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Case 5. L1(s) or L2(s) has a pole at s = 1
with multiplicity m1(≥ 0) or m2(≥ 0), re-
spectively. Set

l(s) =
(s− 1)m(L1 − a1)...(L1 − aq)

(L2 − b1)...(L2 − bq)
,

where m = q(m2−m1) is an integer. We use
the arguments similar to the Case 4. So we
conclude that

l(s) = eAs+B, where A, B are constants.

Moreover

lim
s→+∞

(s− 1)−meAs+B = lim
s→+∞

(s− 1)−ml(s)

= lim
s→+∞

(L1 − a1)...(L1 − aq)
(L2 − b1)...(L2 − bq)

=
P (1)

Q(1)
.

So A = 0,m = 0, that is, l(s) = c. Thus
L1 + a = c(L2 + b). Applying Theorem 1.1
we get L1 = L2, a = b.

Proof of Part 3. We use the arguments simi-
lar to the Proof of Part 2 and then applying
Theorem 1.1 we get L1 = L2.

4 Conclusion

We study conditions to equations:

xq + a = c(yq + b),
1

xq + a
=

c

yq + b
+ c1,

xqyq = a

have solutions on sets of L - functions in
the extended Selberg class. Since we give
some sufficient conditions for a finite set S
to be a uniqueness range set of L - functions
in the extended Selberg class. Namely, let
P (z) = zq+a, Q(z) = zq+b and let S, T are
respective sets of zeros of P (z), Q(z). Then
L1 = L2 and P = Q if one of the following
conditions is satisfied:

1. q ≥ 8 and EL1(S) = EL2(T );

2. q ≥ 3 and EL1(S) = EL2(T ), a 6= −1,
b 6= −1;

3. q ≥ 1 and EL1(S) = EL2(T ), a = b 6= −1.
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